张洪亮 董天崴 张磊艺
[摘要] 目的 研究miR-21-5p在肺动脉高压发病中的调控机制。 方法 应用qRT-PCR方法检测miR-21-5p在正常人和先天性心脏病伴肺动脉高压患者血清,以及常氧和缺氧处理肺动脉平滑肌细胞中的表达;利用Edu渗入法以及划痕实验研究miR-21-5p对肺动脉平滑肌细胞增殖及迁移的影响;应用Targetscan软件进行靶基因预测并在肺动脉平滑肌细胞中进行验证。 结果 肺动脉高压患者血清miR-21-5p水平显著高于正常人血清(P < 0.001);与常氧相比,缺氧处理肺动脉平滑肌细胞明显促进miR-21-5p表达(P < 0.01);miR-21-5p能够促进缺氧条件下的肺动脉平滑肌细胞增殖、迁移;双荧光素酶报告系统证明miR-21-5p能够结合骨形成蛋白Ⅱ型受体(BMPR2)的3UTR;鉴定miR-21-5p在肺动脉平滑肌细胞中靶向BMPR2基因。 结论 miR-21-5p调控靶基因BMPR2参与肺动脉高压发病。
[关键词] 肺动脉高压;microRNA;骨形成蛋白Ⅱ型受体;调控
[中图分类号] R543.2 [文献标识码] A [文章编号] 1674-4721(2016)10(b)-0012-04
[Abstract] Objective To reveal the role of miR-21-5p in the development of pulmonary arterial hypertention (PAH). Methods qRT-PCR method was used to detect the expression of miR-21-5p in the serum of healthy donors and patients with PAH associated with congenital heart disease (CHD-PAH), and the pulmonary artery smooth muscle cells (PASMC) exposed to normoxia and hypoxia. The effects of miR-21-5p on hypoxia-induced PASMC proliferation and migration were detected by Edu incorporation and wound assay. The target gene of miR-21-5p was predicted by targetscan and validated by luciferase report assay. Results miR-21-5p level was significantly increased in the serum of CHD-PAH patient as compared with healthy donors (P < 0.001). In addition, the expression of miR-21-5p was significantly induced in PASMC treated by hypoxic as compared with normoxia (P < 0.01). Functional analysis revealed that miR-21-5p significantly enhanced hypoxia-induced PASMC proliferation and migration. Finally, dual-luciferase reporter system proved miR-21-5p could integrate with BMPR2 3UTR, then BMPR2 was identified as a direct target of miR-21-5p. Conclusion The study demonstrates that miR-21-5p is involved in regulating PAH by targeting BMPR2.
[Key words] Pulmonary arterial hypertension; microRNA; BMPR2; Regulation
肺动脉高压是以肺动脉压力持续升高、肺血管阻力增加和肺小血管重构为特征的肺血管疾病[1]。肺动脉平滑肌细胞的增殖和迁移,使得肺小动脉内径变细,最终肺动脉阻力增加,压力升高为其病理学特征[2-3]。
microRNA(miRNA)是一类高度保守、长度为20~25个核苷酸的非编码单链小RNA[4]。miRNA通过与靶基因mRNA 3′非翻译区(3′-UTR)特异结合,在转录后水平对基因进行调控[5]。研究表明,miRNA参与肺动脉高压的发生发展进程[6-7]。miRNA通过促进肺动脉平滑肌细胞的分化和抗凋亡效应来参与肺动脉高压的进程[8-9]。本研究对miR-21-5p调控BMPR2参与肺动脉高压的发病机制进行初步探索。
1 材料与方法
1.1 患者血清标本采集
血清标本来源于北京阜外医院先天性心脏病伴有肺动脉高压(CHD-PAH)患者及健康人各24例。肺动脉高压的诊断标准为在海平面静息状态下右心导管检查肺动脉收缩压>4 kPa(30 mmHg)和/或肺动脉平均压>3.33 kPa(25 mmHg)。血液样本在室温下静置1 h,4℃离心机3000 r/min离心10 min,上清液保存于-80℃冰箱。
1.2 miR-21-5p实时荧光定量检测
应用qRT-PCR检测试剂盒(深圳盎然生物)进行检测。miRNA经加poly A后立即逆转录反应形成cDNA,snoRNA44作为内参。每个样本PCR反应做3个复孔,引物如下:miR-21-5p 5′-GTGCAGGGTCCGAGGTCAGAGCCACCTGGGCAATTTTTTTTTTTCAACAT-3′(RT),5′-TTCGGTAGCTTACAGACTGA-3′(Forward); SNORD44:5′ -GTGCAGGGTCCGAGGTCAGAGCCACCTGGGCAATTTTTTTTTTTAGTCAG-3′(RT),5′-TGGCCTGGATGATGATAAGCA-3′ (Forward)。
1.3 肺动脉平滑肌细胞的分离和培养
人肺动脉平滑肌细胞(HPASMC)购自美国Science Cell公司,大鼠肺动脉平滑肌原代细胞(RPASMC)分离自SD大鼠[北京市维通利华实验动物技术有限公司,合格证号:SCXK(京)2011-0011]肺动脉。
1.4 靶基因3-UTR荧光素酶载体及其突变载体的构建
以大鼠的基因组DNA为模板,将pGL3-ccdb载体经双酶切后与基因的3-UTR产物连接。BMPR2的3-UTR突变引物,扩增产物连接到双酶切后的pGL3-ccdb载体,连接后转化酶切鉴定后进行测序分析。
1.5 BMPR2蛋白表达检测
采用Western blot法进行蛋白检测。4%~10%的预制胶电泳分离蛋白质,经湿转法将蛋白转移至硝酸纤维素膜上,一抗4℃摇床孵育过夜,用Totallab TL100图像分析软件对特异条带进行灰度扫描,并用相对灰度值表示蛋白相对含量。一抗浓度分别为:抗BMPR2(Abcam)1∶1000,抗β-Tubulin(Santa Cruz)1∶2000;二抗浓度为1∶2000。
1.6 细胞增殖实验
根据试剂盒(广州锐博生物),接种细胞于48孔板,加入20 μmol/L EdU继续培养24 h后,用4%多聚甲醛室温固定30 min,0.5%Triton X-100透化10 min,每孔细胞加入150 μL染色反应液反应30 min。DNA用1×Hochest (150 μL/孔)染色5 min,在荧光显微镜下拍照。
1.7 细胞迁移实验
细胞密度达到90%以上时进行划痕(每组划3~5个位置),更换成含0.5%FBS的SmGM-2培养基进行饥饿处理,并标记和拍照,所有细胞迁移实验重复3次。
1.8 统计学方法
采用SPSS 17.0统计学软件进行数据分析,计量资料数据用均数±标准差(x±s)表示,两组间比较采用t检验;以P < 0.05为差异有统计学意义。
2 结果
2.1 miR-21-5p在CHD-PAH患者血清中及缺氧条件下肺动脉平滑细胞中的表达
RT-PCR检测结果显示:miR-21-5p在CHD-PAH血清中表达升高,与正常人血清样本比较,差异有高度统计学意义(P < 0.001);RPASMC和HPASMC分别在常氧条件下培养48 h以及缺氧条件下分别培养12、24、48 h,收集细胞后检测miR-21-5p的表达,结果显示缺氧条件下miR-21-5p的表达升高最明显,与常氧比较在24 h达到高峰值(P < 0.001)。
2.2 miR-21-5p对人肺动脉平滑肌细胞增殖的影响
观察在缺氧条件下分别转染miRNA-control、miR-21-5p mimic、anti-cnotrol、anti-miR-21-5p后对HPASMC增殖影响。从图2(封四)结果可见,与对照组相比,过表达miR-21-5p能促进HPASMC增殖(P < 0.01),相反,当转染miR-21-5p拮抗物后抑制了HPASMC增殖(P < 0.01)。
2.3 miR-21-5p在人肺动脉平滑肌细胞迁移过程中的作用
实验表明,在缺氧24 h条件下miR-21-5p具有促进HPASMC迁移作用(P < 0.01);应用miR-21-5p抑制物缺氧24 h后,anti-21-5p抑制了HPASMC的迁移功能(P < 0.01)。
2.4 miR-21-5p靶基因预测及3-UTR荧光素酶报告系统验证
TargetScan在线软件预测候选靶基因中BMPR2的3-UTR与miR-21-5p结合位点(图4A)。双荧光素酶检测结果显示,过表达miR-21-5p使野生型BMPR2报告载体荧光素酶活性下降,与野生型对照组比较,差异有高度统计学意义(P < 0.01),突变的荧光素酶报告基因的活性与对照组比较大致不变(P > 0.05)(图4B)。
2.5 miR-21-5p抑制内源性BMPR2的表达
与对照组比较,转染miR-21-5p mimic组中BMPR2表达水平明显上调(P < 0.001),转染miR-21-5p inhibitor组BMPR2表达水平明显降低(P < 0.001)(图5A、B)。应用Western blot检测BMPR2蛋白表达水平,结果显示,与mimic-control相比,过表达miR-21-5p BMPR2蛋白表达下降;抑制miR-21-5p的表达,能使HPASMC中BMPR2蛋白表达水平上调(图5C)。
3 讨论
既往研究证明miRNA参与肺动脉高压的发病机制[10-11]。本研究检测肺动脉高压患者血清及缺氧诱导的肺动脉平滑肌细胞中miR-21-5p表达升高,细胞功能实验在缺氧条件下miR-21-5p具有促进细胞增殖和迁移功能,应用Target scan在线软件预测miR-21-5p靶基因为BMPR2,实验证实miR-21-5p通过靶向BMPR2参与肺动脉高压的细胞增殖和血管重构过程。
肺动脉高压发病机制中BMPR2基因突变会引发肺动脉高压易感性[12-13]。BMPR2是转录生长因子-β家族的重要成员,很早就有实验证实BMPR2基因杂合子突变是肺动脉高压家族患者人群的重要遗传易感因素[14]。在肺动脉高压患者的家族人群检测结果显示:大约有75%的家庭中检测到BMPR2基因突变[15]。实验证明,BMPR2和其下游信号途径在肺血管重构中扮演着重要角色,通过激活BMPR2基因阻止细胞周期从而抑制肺动脉平滑肌细胞的分化[16-17]。
microRNA参与肺动脉高压的调控机制已经在多个研究中得到证实,miR-145通过靶向BMPR2参与肺动脉高压[18],抑制miR-20a导致BMPR2下游基因Id-1和Id-2的激活,从而抑制肺动脉平滑肌细胞的增殖[19]。miR-21在肺动脉高压的动物模型肺组织中高表达,通过激活RhoB信号途径促进肺动脉高压的发生[20]。本研究发现缺氧条件下,过表达miR-21-5P具有促进肺动脉平滑肌细胞的迁移和增殖功能。说明在缺氧条件下,miR-21-5p对肺动脉的重构过程具有重要的作用。
本研究只探讨了miR-21-5p通过BMPR2基因对HPASMC增殖和迁移的影响,Target scan软件预测miR-21-5p同时靶向多个靶基因,其他靶基因是否同时参与了肺动脉高压的调控需要下一步验证。
[参考文献]
[1] Leopold JA,Maron BA. Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension [J]. Int J Mol Sci,2016,17(5):761-775.
[2] Archer SL,Weir EK,Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians:new concepts and experimental therapies [J]. Circulation,2010,121 (18):2045-2066.
[3] Humbert M,Morrel NW,Archer SL,et al. Cellular and molecular pathobiology of pulmonary arterial hypertension [J]. J Am Coll Cardiol,2004,43(12):108-124.
[4] Chen CZ,Li L,Lodish,et al. MicroRNAs modulate hematopoietic lineage differentiation [J]. Science,2004,303(56):83–86.
[5] Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell,2004,116(2):281-297.
[6] Dang LT,Lawson ND,Fish JE. MicroRNA control of vascular endothelial growth factor signaling output during vascular development [J]. Arterioscler Thromb Vasc Biol,2013,33(2):193-200.
[7] Joshi SR,McLendon JM,Comer BS,et al. MicroRNAs-control of essential genes: Implications for pulmonary vascular disease [J]. Pulm Circ,2011,1 (3):357-364.
[8] Brock M,Trenkmann M,Gay RE,et al. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway [J]. Circ Res,2009,104(10):1184-1191.
[9] Jin Y,Chen B,Tipple TE,et al. Arginase II is a target of miR-17-5p and regulates miR-17-5p expression in human pulmonary artery smooth muscle cells [J]. Am J Physiol Lung Cell Mol Physiol,2014,307(2):197-204.
[10] Caruso P,Maclean MR,Khanin R,et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline [J]. Arterioscler Thromb Vasc Biol,2010, 30(4):716-723.
[11] Zeng Y,Liu HT, Gou DM,et al. Hypoxia inducible factor-1 mediates expression of miR-322:potential role in proliferation and migration of pulmonary arterial smooth muscle cells [J].Scientific Repotrs,2015,5(3):12098-120109.
[12] Jones PL,Cowan KN,Rabinovitch M,et al. Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease [J]. Am J Pathol,1997, 150(4):1349-1360.
[13] Malenfant S,Neyron AS,Paulin R,et al. Signal transduction in the development of pulmonary arterial hypertension [J]. Pulm Circ,2013,3(2):278-293.
[14] Deng Z,Morse JH,Slager SL,et al. Familial primary pulmonary hypertension(gene PPH1)is caused by mutations in the bone morphogenetic protein receptor-II gene [J]. Am J Hum Genet,2000,67(3):737-744.
[15] Soubrier F,Chung WK,Machado R,et al. Genetics and genomics of pulmonary arterial hypertension [J]. J Am Coll Cardiol,2013,62(25):13-21.
[16] Wang J,Song Y,Zhang Y,et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice [J]. Cell Res,2012,22(3):516-527.
[17] Yang J,Li X,AlLamki RS,et al. Smad-dependent and smad-independent induction of id1 by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo [J]. Circ Res,2010, 107(2):252-262.
[18] Caruso P,Dempsie Y,Stevens HC,et al. A Role for miR-145 in Pulmonary Arterial Hypertension:Evidence From Mouse Models and Patient Samples[J]. Circ Res,2012,111(3):290-300.
[19] Brock M,Samillan VJ,Trenkmann M,et al. AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension [J]. European Heart Journal,2014,35(45):3203-3211.
[20] Parikh VN,Jin RC,Rabello S,et al. MicroRNA-21 Integrates Pathogenic Signaling to Control Pulmonary Hypertension: Results of a Network Bioinformatics Approach [J]. Circulation,2012,125(12):1520-1532.
(收稿日期:2016-07-13 本文编辑:程 铭)