陈春皓,李建平,边永亮,吕林硕,薛春林
(河北农业大学机电工程学院,河北 保定 071000)
我国是世界上最大的苹果生产国和消费国,2019 年,我国苹果占水果出口贸易总额的20.01%,苹果树栽培面积居世界首位[1-4]。近年来,随着人们生活水平的提高,传统的人工采摘方式越来越不能满足人们对高品质苹果的要求,且人工采摘劳动强度大,作业时间长,采摘高层(2~4 m)苹果还具有一定的危险性,工作效率低[5-6]。利用普通输送管道辅助采摘虽然可以提高工作效率,降低劳动强度,但容易使苹果受到机械损伤,包括挤压、摩擦等外部损伤和碰撞、冲击等内部损伤,其中碰撞是造成苹果机械损伤的最主要原因[7-8]。机械损伤会给苹果造成可视化破坏:一方面,损伤使苹果表面出现褐斑[9];另一方面,损伤使苹果的呼吸速率增加、霉变速率加快、可溶性固形物含量下降,影响苹果的储藏及销售,从而降低苹果的品质和果农的收入[10-12]。因此,对辅助采摘的苹果输送管道的优化尤为重要。MOHSENIN 等[13]研究了落果撞击缓冲表面的力学性质,为苹果捕捉平台筛选到合适的缓冲材料,并提出当冲击产生的应力超过苹果果肉的最大剪切强度时,将会产生机械损伤,但其未测量苹果碰撞后的损伤体积,因而不能对苹果的损伤程度进行分析。STOPA等[14]通过碰撞试验,确定了苹果在不同能量自由载荷下的表面压力分布及果肉组织损伤的临界能量值,得到了损伤表面和损伤体积间的关系,确定了苹果在自由落体冲击载荷下的抗损伤特性和损伤阈值,但未考虑碰撞表面缓冲材料对试验结果的影响。STROPEK 等[15]对梨的损伤敏感性和能量损耗进行分析发现,随着梨下落速度的增加两者均增加。KOMARNICKI 等[16]提出了一种评定‘嘎啦’苹果抗损伤性和损伤阈值的方法,得出抗损伤指数可作为不同跌落高度下损伤体积与防撞保护层间表面压力关系的评价指标。卢立新等[17-19]针对苹果的机械损伤与冲击力学,开展了不同条件下的跌落试验,分析了苹果跌落过程中冲击力学特性,得出了跌落损伤脆值与损伤边界的新概念,但其未对缓冲防撞层的影响进行研究。李小昱等[20]针对苹果机械损伤应力松弛特性,进行了损伤体积影响因素的研究,提出当变形量超出临界变形值时便产生机械损伤。基于此,本研究以苹果落入果箱时撞击力及损伤体积为试验指标,在苹果撞击力测试试验台上模拟果园实际采摘工况,以管道内衬种类、内衬厚度、防撞垫厚度为影响因素,对苹果进行跌落试验,分析各因素对试验指标的影响,寻求苹果低损输送的最优参数组合,为苹果采摘管道输送装置的研发提供参考。
试验所用苹果为‘富士’鲜果,产自河北省保定市顺平县,无病虫害与腐烂损伤,果形正常,无畸形果,果径80~90 mm,单果质量200~280 g,数量200个。试验前,将苹果的果柄剪掉,防止试验时果柄划伤苹果,影响试验数据的准确性。
试验台(图1)主要由台架、输送管道和撞击力测试装置组成。台架包括管道支架、试验底座和苹果损伤观测台,其中:管道支架可支撑输送管道正常工作,试验底座用于固定数显推拉力计及防止苹果滚落,底座上方设有防撞垫,苹果损伤观测台用于放置撞击后的苹果,并进行损伤体积的测量。设有内衬的输送管道内径为90 mm,内衬材料为气泡膜、珍珠棉和海绵。撞击力测试装置由SL-500 型数显推拉力计(测量精度为0.1 N,广东省东莞市三量量具有限公司生产)和笔记本电脑等组成。
图1 撞击力测试试验台Fig.1 Impact force test bench
1.3.1 苹果在输送管道内受力分析
将苹果视为球体,输送管道内设有内衬保护层,当苹果在管道内输送时,由于重力作用挤压管道内衬,使接触处前方的内衬保护层堆积隆起,形成减缓苹果滚动的支撑力FN与摩擦力f(图2)。苹果输送时的受力公式如下:
图2 苹果输送过程中的受力分析Fig.2 Force analysis of apples during transportation
式中:G为苹果所受的重力,N;FN为隆起后的内衬对苹果的支撑力,N;f为输送管道与苹果间的摩擦力,N;m为苹果的质量,kg;a为苹果由管道输送后的加速度,m/s2;θ为输送管道与地面间的夹角,(°);β为摩擦力与输送管道壁间的夹角,(°);u为输送管道内衬材料的摩擦系数。
1.3.2 苹果落入果箱时受力分析
苹果由管道输送后,以一定的初速度及加速度倾斜撞击到果箱内的防撞垫上,防撞垫与苹果接触处的前方会向上隆起,并且反作用给苹果一个倾斜向上的支持力,使苹果成功下落到果箱内,而防撞垫的厚度对隆起高度有直接的影响。苹果落入果箱时的受力如图3所示,相关公式[8]如下:
图3 苹果落入果箱时的受力分析Fig.3 Force analysis of apples when falling into the fruit box
式中:FN1为隆起后的防撞垫对苹果的支撑力,N;v0为苹果输送到管道出口时的初速度,m/s;v为苹果落入果箱时的速度,m/s;Δt为苹果由管道出口落到果箱内的时间,s。
1.4.1 单因素试验设计
影响苹果落入果箱时的撞击力及损伤体积的主要因素有:管道入口高度、管道倾角、管道内衬种类、内衬厚度、防撞垫厚度。由于工人可在地面上采摘低层苹果,而对于高层(2~4 m)苹果,需要登梯爬高辅助采摘,人手最大操作范围是0.77~2.01 m[21],因此,将管道入口高度设置为3 m。现代苹果园果树行距为4 m[22],果箱位于两树之间,输送管道出口与入口的水平距离为2 m,计算得到管道倾角为56.3°。参考前人研究[23],选择缓冲效果较好的硅橡胶材料作为防撞垫。因此,本研究以输送管道的内衬种类、内衬厚度及防撞垫厚度作为试验影响因素。
以苹果落入果箱时的撞击力和损伤体积为响应指标,分别进行单因素试验。为保证试验结果的准确性,每组试验重复3次,取平均值。内衬种类选取市面上常见的气泡膜、珍珠棉和海绵(图4),在进行其他单因素试验时,内衬种类设定为对果实保护效果较好的珍珠棉[24]。内衬厚度增加会导致输送管道直径变大,选取市场上常见的内衬厚度3、5、8、10 mm,在进行其他单因素试验时,内衬厚度设定为5 mm。在前人研究[23]的基础上,选取市场上常见的防撞垫厚度2、4、6、8 mm,在进行其他单因素试验时,防撞垫厚度设定为中间水平4 mm。
图4 内衬材料种类Fig.4 Types of lining materials
1.4.2 响应面试验设计
根据单因素试验结果,确定响应面试验中各因素的水平。为了减少试验次数,利用Design-Expert 12.0 软件的Box-Behnken 模块设计3 因素3 水平试验方案,试验因素和水平编码如表1所示。
表1 试验因素和水平编码Table 1 Code of test factors and levels
1)苹果撞击力的测定。设置数显推拉力计为峰值模式,待各参数均达到设定值并保持稳定后开始试验,每组试验选取10 个新鲜的‘富士’苹果。苹果由管道入口自由下落,经过管道内衬的缓冲输送后落在试验底座的防撞垫上,用数显推拉力计测量出苹果的瞬时最大撞击力,通过电脑显示和统计撞击力峰值,并生成撞击力变化曲线。
2)苹果损伤体积的测定。苹果损伤体积的测定参考单明彻等[25]的测定方法,试验结束后,将苹果在室温条件下放置24 h,待苹果损伤组织颜色变褐后,将变褐处果皮水平切开(即横切,图5A),去掉损伤处的果皮,露出损伤处果肉,利用GD110640型游标卡尺(精度为0.02 mm)测量损伤表面的长轴与短轴,然后在损伤中心处将苹果沿着花-茎轴方向垂直切开(即纵切,图5B),测量损伤深度及苹果果皮表面到损伤顶部的距离。
图5 苹果损伤测试示意图Fig.5 Schematic diagram of apple damage test
结合胡广锐等[26]与KOMARNICKI等[27]的研究,归纳出苹果损伤体积的计算公式:
式中:V为苹果损伤体积,mm3;D为苹果的平均直径,为赤道区域横截面按间隔120°测量3 次的平均值,mm;ω1为苹果损伤表面的长轴,mm;ω2为苹果损伤表面的短轴,mm;d1为苹果损伤深度,mm;d2为苹果果皮表面到损伤顶部的距离,mm。
2.1.1 管道内衬材料对苹果管道输送的影响
由表2 可知,内衬材料种类对苹果撞击力和损伤体积影响极显著。在内衬材料厚度为5 mm,防撞垫厚度为4 mm 的条件下,随着内衬材料种类的改变,苹果受到的撞击力与损伤体积也随之改变。对于撞击力,珍珠棉与海绵材料对撞击力的减缓效果相对较好,缓冲后撞击力均为10.96 N;对于损伤体积,珍珠棉材料作为管道内衬时,苹果的损伤体积相对较小,为1 127.79 mm3。综上所述,珍珠棉材料内衬对苹果的保护作用最好。选取气泡膜、珍珠棉、海绵进一步进行响应面试验。
表2 内衬种类对苹果管道输送参数的影响Table 2 Effects of lining types on apple pipeline transportation parameters
2.1.2 管道内衬厚度对苹果管道输送的影响
由表3 可知,内衬厚度对苹果撞击力和损伤体积影响极显著。在内衬材料种类为珍珠棉,防撞垫厚度为4 mm的条件下,随着内衬厚度的增加,苹果受到的撞击力和损伤体积逐渐减小。内衬厚度为5~10 mm 时,撞击力和损伤体积相对更小,变化相对平稳,对苹果的保护作用更好。综上所述,选取管道内衬厚度为5、8、10 mm 进一步进行响应面试验。
表3 内衬厚度对苹果管道输送参数的影响Table 3 Effects of lining thickness on apple pipeline transportation parameters
2.1.3 防撞垫厚度对苹果管道输送的影响
由表4 可知,防撞垫厚度对苹果撞击力和损伤体积影响极显著。在内衬材料种类为珍珠棉,内衬材料厚度为5 mm 的条件下,随着防撞垫厚度的增加,苹果受到的撞击力和损伤体积逐渐减小。防撞垫厚度为4~8 mm 时,撞击力和损伤体积相对更小,变化相对平稳,对苹果的保护作用更好。综上所述,选取防撞垫厚度为4、6、8 mm 进一步进行响应面试验。
表4 防撞垫厚度对苹果管道输送参数的影响Table 4 Effects of crash pad thickness on apple pipeline transportation parameters
2.2.1 响应面试验结果
响应面试验方案及结果如表5 所示。利用Design-Expert 12.0 软件对管道内衬材料(X1)、内衬厚度(X2,mm)、防撞垫厚度(X3,mm)进行回归拟合,分别得到苹果落入果箱时的撞击力(Y1,N)和损伤体积(Y2,mm3)的二次多项式回归拟合模型:
表5 响应面试验方案及结果Table 5 Schemes and results of the response surface test
2.2.2 方差分析
对响应面试验的回归模型进行方差分析(表6)可知:苹果落入果箱时的撞击力Y1和损伤体积Y2的二次回归模型P值<0.000 1,表明2个模型极显著;失拟项P值分别为0.623 5和0.093 4(均大于0.05),说明失拟项不显著,试验误差小,2个模型的二次回归方程与实际相吻合,可预测本试验条件下内衬材料、内衬厚度和防撞垫厚度对撞击力与损伤体积的影响。此外,2个模型的决定系数(R2)分别为0.989 2和0.986 1(接近1),修正决定系数(R2Adj)分别为0.998 3和0.991 1(接近1),表明回归方程拟合良好,模型可靠。
对 于撞击力Y1,X1、X2、X3、X1X3、、、的P值均小于0.01,为极显著;X1X2、X2X3的P值均在0.01 与0.05 之间,为显著(表6)。说明管道内衬种类、内衬厚度及防撞垫厚度对撞击力有极显著的影响,其中,内衬种类与防撞垫厚度存在极显著的交互作用,其余各项存在显著的交互作用,二次项、、对撞击力的影响均达到极显著水平。
对于损伤体积Y2,X1、X2、X3的P值均小于0.01,为极显著;X1X2的P值在0.01 与0.05 之间,为显著;X1X3、X2X3、的P值均大于0.05,为不显著(表6)。说明管道内衬种类、内衬厚度及防撞垫厚度对苹果损伤体积有极显著的影响,其中,二次项X12、对苹果损伤体积的影响均达到极显著水平,内衬种类与内衬厚度存在显著的交互作用。根据以上方差分析结果,剔除二次多项式回归拟合模型中的不显著项,保留显著项(P<0.05),将式(8)简化为式(9):
表6 回归模型的方差分析Table 6 Analysis of variance of regression model
2.2.3 响应面分析
绘制响应曲面图,各因素交互作用对撞击力Y1和损伤体积Y2的影响分别如图6和图7所示。
当管道内衬材料为珍珠棉(位于中心水平)时,撞击力和苹果损伤体积均随管道内衬厚度的增大而减小,随防撞垫厚度的增大而减小,其中,管道内衬厚度对两者的影响相对更显著(图6A、图7A)。当管道内衬厚度为8 mm(位于中心水平)时,撞击力和苹果损伤体积均随内衬种类编码值的增大先减小后增大,随防撞垫厚度的增大而减小,其中,防撞垫厚度对两者的影响更为显著(图6B、图7B)。当防撞垫厚度为6 mm(位于中心水平)时,撞击力和苹果损伤体积均随内衬种类编码值的增大先减小后增大,随内衬厚度的增大而减小,其中,内衬厚度对两者的影响更为显著(图6C、图7C)。由图6 与图7 分析可知,各因素对响应面的影响规律与二次多项式回归拟合模型方差分析的结果基本一致。
图6 各因素交互作用对苹果撞击力的影响Fig.6 Effects of interaction of various factors on impact force of apple
图7 各因素交互作用对苹果损伤体积的影响Fig.7 Effects of interaction of various factors on damage volume of apple
2.2.4 试验参数优化与验证
为获得苹果管道输送装置的最佳参数组合,使其发挥较优的工作性能,运用Design-Expert 12.0软件的优化分析功能,在3因素3水平试验的基础上,得出苹果管道输送的最优编码组合为内衬种类-0.156,内衬厚度1,防撞垫厚度1,此时的撞击力为5.23 N,苹果损伤体积为287.77 mm3。各因素编码值对应的实际值如下:内衬种类为珍珠棉(以编码值-0.156 近似为0 换算所得),内衬厚度为10 mm,防撞垫厚度为8 mm。
按照前述方法对较优参数组合进行重复试验验证,试验分3 组,每组10 个苹果,结果取平均值。苹果经无内衬、无防撞垫的管道输送与较优参数组合下管道输送的对比如图8 所示。结果表明,在上述较优参数组合下,苹果落入果箱时的平均撞击力为5.48 N,平均损伤体积为301.12 mm3。对比预测值与实际试验值,撞击力的误差为4.56%,损伤体积的误差为4.43%,均在5%以内,说明预测模型可靠,得到的较优组合满足实际要求。
图8 苹果损伤对比图Fig.8 Comparison diagram of apple damage
综上所述,考虑试验误差的影响,苹果管道输送装置的最佳参数组合如下:管道内衬材料为珍珠棉,内衬厚度为10 mm,防撞垫厚度为8 mm。在该最佳参数组合条件下,苹果受到的撞击力为4.99~5.47 N,损伤体积为275.02~300.52 mm3。
由苹果在输送管道内受力分析可知,随着苹果前方内衬隆起的变高,摩擦力与管道壁间夹角逐渐变大,驱使苹果斜向下滚动的合力逐渐变小,苹果滚动速度逐渐变慢,输送管道对苹果的缓冲保护作用逐渐变好。不同材料及厚度的管道内衬隆起程度存在差异,对苹果的保护作用不同。由苹果落入果箱时的受力分析可知,在一定范围内,防撞垫厚度越厚,苹果撞击后隆起越高,对苹果的缓冲效果越好,苹果被反弹后的二次碰撞就越小,苹果受到的损伤也就越小。以苹果落入果箱时的撞击力和损伤体积为评价指标,利用控制变量法分析可知:在同等条件下,撞击力越小,苹果受到的保护作用越好;损伤体积越小,苹果损伤也就越小。
输送管道内衬种类为珍珠棉时,对苹果的缓冲保护效果最好,与已有研究[28-29]中珍珠棉衬垫能保持水果较高的硬度、减小果实损伤、减轻果实褐变的结论相符。这是因为珍珠棉具有高强度缓冲吸振、抗震能力,而且该材料柔软,有弹性[30]。气泡膜与海绵的密度低于珍珠棉,在缓冲抗震效果上稍差于珍珠棉。
内衬厚度为10 mm时,对苹果的缓冲保护效果最好,与李萌等[31]得到的缓冲材料厚度越高,产品的跌落加速度越小、缓冲效果越好的结论相符。这是由于苹果为不规则的球形,在管道内输送时,苹果上凸起的部分会优先受到管壁的磕碰,当管道内设有内衬材料时,凸起部分便会陷入内衬材料,减少与管壁间的碰撞,因此,随着内衬材料厚度的增加,缓冲效果逐渐提高,但内衬材料过厚,会使管道直径过大,影响工作的舒适性。
防撞垫厚度为8 mm 时,对苹果的缓冲保护效果最好。这是由于苹果经管道输送后具有一定的初速度和加速度,若直接落入果箱会造成二次碰撞,而在管道出口下方设置防撞垫可对苹果落入果箱时起到缓冲作用,且随着防撞垫厚度的增加,苹果落在防撞垫上陷入的深度越深,对苹果的缓冲作用也就越好。
总之,本研究提出的苹果管道输送装置参数优化方法可靠,试验步骤可控,对苹果采摘管道输送装置的研发具有重要意义。
1)本研究设计了苹果撞击力与损伤体积测试试验台,阐述了其结构与工作原理。通过分析苹果输送后各因素对试验指标的影响,确定了苹果管道输送的最优参数组合。
2)通过单因素试验确定了各因素的较优水平范围:内衬材料种类为气泡膜、珍珠棉、海绵;内衬厚度为5、8、10 mm;防撞垫厚度为4、6、8 mm。确定了各单因素与撞击力及损伤体积的关系:珍珠棉作为内衬材料对苹果的保护作用相对较好,苹果落入果箱时的撞击力和损伤体积均分别随内衬厚度和防撞垫厚度的增加呈逐渐减小的趋势。
3)设计了以管道内衬种类、内衬厚度、防撞垫厚度为试验因素,以苹果落入果箱时的撞击力与损伤体积为响应值的3因素3水平的响应面试验,得到最优输送参数组合:管道内衬种类为珍珠棉,内衬厚度为10 mm,防撞垫厚度为8 mm。在此条件下,撞击力为4.99~5.47 N,损伤体积为275.02~300.52 mm3。响应面试验所得结果与验证试验结果的误差值均在5%以内,表明所得的模型拟合程度较好,结果可靠。