一道相似判定问题的多种解法及延伸

2022-05-30 10:48徐智勇
数理天地(初中版) 2022年1期
关键词:瓦特外接圆证法

徐智勇毕业于扬州大学理学院数学系,中学一级教师,现执教于扬州大学附属中学东部分校.业余时间热衷于研究初等数论、竞赛几何等方面的问题,并有多篇稿件发表在《数学通报》、《中等数学》等杂志.

题目 如图1,点D为△ABC边BC上一点(不与端点重合),且满足BDBC=AD2AC2.求证:△ABC∽△DBA.

分析 本题结论涉及到初中几何常见的相似基本图形,将已知条件转化为∠BAD=∠C或AB2=BD·BC即可.下面介绍几种方法供参考.

证法1 如图2,过点D作DE∥AB交AC于点E.

由DE∥AB可知

BDBC=AEAC,

且BDBC=AD2AC2,

则AEAC=AD2AC2,

即AEAD=ADAC,

且∠EAD=∠DAC,

故△EAD∽△DAC,

进而∠ADE=∠C,

同时由DE∥AB可知

∠BAD=∠ADE,

从而∠BAD=∠C,

又∠B=∠B,

所以△ABC∽△DBA.证毕.

借助平行线建立比例关系进行问题转化是常见方法,在练习中提供了几种类似于证法1的思路.

证法2 如图3,延长AD交△ABC外接圆于点E,连接BE,CE.由A,B,E,C四点共圆,知∠ACD=∠BED,

即△ACD∽△BED,

故BEAC=BDAD,

即BE2AC2=BD2AD2,

结合BDBC=AD2AC2,

则BE2=BD·BC,

进而△BED∽△BCE,

则∠BED=∠BCE,

且∠ACD=∠BED,∠BAD=∠BCE,

故∠BAD=∠BCA,

从而△ABC∽△DBA.证毕.

证法3 如图4,可以证明AB为△ADC外接圆切线,否则过A点作△ADC外接圆切线AB′,交直线BC于点B′(不妨设点B′在点B右侧,即BC>B′C,BD>B′D),则由切线可知∠B′AD=∠B′CA,

从而△AB′C∽△DB′A,

故S△AB′DS△CB′A=AD2AC2=B′DB′C,

且BDBC=AD2AC2,

则BDBC=B′DB′C=BD-B′DBC-B′C=BB′BB′=1,

即BD=BC,

这明显与题意矛盾,故AB为△ADC外接圆切线,故∠BAD=∠BCA,从而△ABC∽△DBA.证毕.

证法4 如图5,过点A作AH⊥BC交BC于点H.可设BH=m,DH=n,CD=l,AH=h,则由BDBC=AD2AC2可知m+nm+n+l=n2+h2(n+l)2+h2,

化简即得h2=2mn+n2+ml+nl,

再配方m2+h2=m2+2mn+n2+ml+nl

=(m+n)2+l(m+n)

=(m+n)(m+n+l),

即AB2=BD·BC,

从而△ABC∽△DBA.证毕.

一些几何定理也可以呈现合适的数量关系解决本题,以斯特瓦特定理为例给出第5种方法:

斯特瓦特定理:

如图6,点D为△ABC边BC上一点(不与端点重合),则 AB2·CD+AC2·BD

=AD2·BC+BD·CD·BC(定理可由勾股定理证得).

证法5 由斯特瓦特定理

AB2·CD+AC2·BD

=AD2·BC+BD·CD·BC,

故AB2·CDAC2+BD=AD2·BCAC2+BD·CD·BCAC2,

且BDBC=AD2AC2,

故AB2·CDAC2+BD=BD+BD·CD·BCAC2,

化简即得AB2=BD·BC,

从而△ABC∽△DBA.证毕.

对原题作变式处理,可得問题如下:

变式 如图7,已知AB2CD2=PA·PBPC·PD.求证:△PAB∽△PCD.

简证 过点B作BE∥CD交PA于点E.

由BE∥CD可知

△PBE∽△PCD,

故BECD=PBPC=PEPD,

进而BE2CD2=PB·PEPC·PD,①

且AB2CD2=PA·PBPC·PD,②

从而①÷②可得

BE2BA2=PEPA,

这就转化为了原问题,

故△PBE∽△PAB,

且△PBE∽△PCD,

从而△PAB∽△PCD.证毕.

变式题亦即表明以下结论成立:

结论1 如图9,已知在△ABC和△A′B′C′中,AB≥AC,A′B′≥A′C′,∠A=∠A′,且BC2B′C′2=AB·ACA′B′·A′C′.求证:△ABC∽△A′B′C′.

由面积法对结论1中的条件进行转化,可以得到:

结论2 如图10,已知在△ABC和△A′B′C′中,AB≥AC,A′B′≥A′C′,∠BAC=∠B′A′C′且AD⊥BC,A′D′⊥B′C′.求证:△ABC∽△A′B′C′.

具体证明留作练习.

练习

1.按图11,12中提供的辅助线证明原题.

2.证明结论2.

猜你喜欢
瓦特外接圆证法
一道数列不等式题的多种证法
R.Steriner定理的三角证法
欧拉不等式一个加强的再改进
将相等线段转化为外接圆半径解题
发明蒸汽机的瓦特
仅与边有关的Euler不等式的加强
造福人类的科学家瓦特
两个三角公式的一种新证法
负瓦特:被忽视的“第五大能源”
一道IMO试题的另解与探究