徐 晶, 赵正林, 师 岩, 高 涵, 刘哲丞, 武 爽, 朱 谋, 张春晶
(齐齐哈尔医学院 生化教研室,黑龙江, 齐齐哈尔 161006)
2型糖尿病(type 2 diabetes mellitus,T2DM)是一种慢性代谢性疾病,其特点是由综合性胰岛素抵抗引起的高血糖症,胰岛素分泌异常是高血糖的主要原因。在临床治疗中,虽然采用西药或胰岛素直接注射治疗糖尿病可显著降低患者的血糖,但是长期服用药物会增加患者的心血管负担,同时西药副作用也不可忽视[1-3]。保护胰岛细胞功能促进胰岛素分泌是治疗2型糖尿病的关键。因此,研发副作用小且能有效预防并发症的天然药物是改善胰岛素抵抗,恢复胰岛细胞功能,进行有效的干预和治疗受到研究人员的关注。
京尼平(genipin, Gen)是传统中药茜草科植物中栀子果的有效成分京尼平苷,经过β葡萄糖苷酶水解而成的化合物[4-5]。研究表明,京尼平具有多重功效,例如抗氧化应激损伤、保护神经细胞、保肝利胆和抗糖尿病等[6-7]。研究发现,胰腺β细胞长时间处于高葡萄糖环境中,细胞会出现葡萄糖刺激的胰岛素分泌(glucose-stimulated insulin secretion,GSIS)缺陷和细胞凋亡,影响β细胞对胰岛素的释放量,进而影响体内对血糖的吸收和利用[8]。因此,本研究将系统分析京尼平对高葡萄糖培养下的小鼠胰岛MIN6细胞的细胞活力、胰岛素释放量和抗氧化及氧化应激方面的影响,为京尼平在糖尿病预防和治疗方面提供实验依据。
酶标仪(Spark);离心机(eppendorf);LSM 710 激光扫描共聚焦显微镜(ZEISS);凝胶成像系统(BIO-RAD)。
小鼠MIN6细胞在含10% 胎牛血清的1640培养基中培养,置于37 ℃ 5% CO2细胞培养箱中,按照实验分组培养48 h。实验分组:对照组(normal control, NC),不含葡萄糖1640培养基培养;京尼平组(Gen),1640培养基中加入京尼平,终浓度为10 μmol/L;高糖损伤组(HG),葡萄糖浓度为33 mmol/L;高糖和京尼平组(HG+Gen),葡萄糖浓度为33 mmol/L,京尼平浓度为10 μmol/L。
将培养的90 μL小鼠胰岛MIN6细胞,以5×104/mL密度的悬液接种在96孔细胞培养板中,置于37 ℃, 5% CO2的细胞培养箱中培养24 h。弃培养基,PBS清洗3次,对照组(normal control, NC)加入10 μL培养基;京尼平组(Gen)加入10 μL京尼平使孔内终浓度为10 μmol/L ;高糖损伤组(HG)加入10 μL葡萄糖,使孔内终浓度为33 mmol/L;高糖和京尼平组(HG+Gen)加入10 μL使孔内葡萄糖终浓度为33 mmol/L,京尼平终浓度为10 μmol/L,设置5个复孔和空白孔(只加培养基),培养48 h。每孔加入10 μL CCK-8试剂,继续孵育2 h后,在450 nm处检测光密度(OD)值,根据如下公式计算细胞存活率。
细胞存活率(%)=(实验孔-空白孔)/(对照孔-空白孔)×100%
将细胞以4.5×105万/孔的密度接种在6孔细胞培养板中,培养24 h。按照上述分组,分别加入葡萄糖和京尼平,使葡萄糖终浓度为33 mmol/L,京尼平终浓度为10 μmol/L,培养48 h,收集上清,短暂离心后弃掉脱落的细胞。按照小鼠胰岛素(insulin)酶联免疫检测试剂盒说明书操作,在450 nm波长处检测光密度值,根据标准曲线计算各组胰岛素释放量。
按照上述实验分组收集细胞沉淀,用PBS清洗1次。按照ATP含量检测试剂盒说明书,将细胞沉淀悬浮在400 μL细胞提取液中,超声破碎1 min(冰浴,200 W,超声2 s,停1 s),10 000 g,4 ℃,离心10 min,收集上清至另1个EP管中,加入500 μL氯仿,漩涡震荡混匀,10 000 g, 4 ℃,离心3 min,收集上清,置于冰上。按照测定要求,在340 nm处分别读取吸光度值A1和A2,根据说明书计算公式,计算各实验组ATP含量。
按照上述实验分组收集细胞沉淀置EP管中,PBS清洗1次。每样加入500 μL培养基配制的浓度为10 μmol/L的DCFH-DA探针,重悬细胞,置于37 ℃, 5% CO2细胞培养箱中30 min,PBS清洗2次。最后,用500 μL PBS重悬细胞置流式管中。流式细胞仪测定荧光强度(fluorescence intensity, FI)。
陈少平:质量是企业和产业核心竞争力的体现。农垦是国有农业经济的骨干和代表,理所当然要在质量兴农、绿色兴农和品牌强农上走在全国农业农村系统的前列。为此,必须立足转变农业发展方式,推进农业供给侧结构性改革,全面提升农业优质化、绿色化、品牌化水平。
按照上述实验分组收集细胞沉淀。每个样品加入500 μL试剂盒中的试剂4悬浮细胞沉淀,超声破碎(冰浴,300 W,超声5 s,间隔30 s,4次),按照谷胱甘肽测定试剂盒说明书,测定T-GSH和GSSG含量,并计算GSH/GSSG比值。
按照上述实验分组收集2×106个细胞沉淀,PBS或提取液重悬沉淀超声破碎(冰浴,300 W,超声5 s,间隔30 s,4次)。按试剂盒说明书操作,酶标仪测定各组细胞光密度(A) 值和测定蛋白质浓度,根据说明书换算成细胞内丙二醛(malondialdehyde,MDA )含量、超氧化物歧化酶(superoxide dismutase,SOD) 、过氧化氢酶(catalase,CAT)活性和细胞培养上清液中乳酸脱氢酶(Lactate Dehydrogenase,LDH)活性。
将小鼠胰岛MIN6细胞配置成密度为5.0×104个/mL的细胞悬液,取1 mL接种在20 mm激光共聚焦专用玻璃底培养皿中。按照上述分组,分别加入葡萄糖和京尼平,使葡萄糖终浓度为33 mmol/L,京尼平终浓度为10 μmol/L,培养48 h。加入250 μL JC-1工作液,按照线粒体膜电位(Mitochondrial membrane potential,MMP)检测试剂盒说明书避光染色20 min,弃掉染色液,加入500 μL清理液,应用激光共聚焦显微镜获取图像和细胞荧光强度。
将收集的各实验组细胞经蛋白质裂解液冰上裂解15 min,12 000 r/min离心15 min,收集上清液获取总蛋白质。采用考马斯亮蓝蛋白质定量试剂盒进行蛋白质浓度测定,以最低浓度组为标准调整其他各实验组蛋白质的总浓度。以40 μg总蛋白质进行5%浓缩胶、15%分离胶的SDS-PAGE。电泳完毕后,采用湿法将凝胶转至PVDF膜(300 mA,1 h),5%脱脂奶粉封闭2 h。一抗4 ℃过夜、二抗37 ℃孵育2 h,ECL化学发光显色。选用GAPDH为内参照,GR一抗1∶2 000,Grx1一抗1∶250,二抗1∶2 500。结果采用凝胶成像仪扫描并分析条带光密度。
小鼠胰岛MIN6细胞在经不同分组培养48 h,各培养组细胞形态饱满、贴壁牢固、伸展清晰,生长的状态无明显差异,结果见Fig.1。但是与对照组(0.97±0.03)比较,京尼平组(0.88±0.08)胰岛细胞活力的差异无统计学意义(P>0.05),高糖损伤组(0.80±0.06)胰岛细胞活力明显下降(P<0.05);与高糖损伤组比较,京尼平(10 μmol/L)作用于高糖损伤的胰岛细胞48 h后,细胞活力(1.00±0.05)显著提高(P<0.05),结果见Fig.2,表明京尼平(10 μmol/L)对高糖损伤的胰岛细胞具有一定的保护作用。
Fig.1 The effects of Genipin on MIN6 cell growth (10×) The control group (NC) was cultured under normal conditions. The high glucose group (HG) was treated with 33 mmol/L glucose. The high glucose and genipin group (HG+Gen) was treated with 33 mmol/L glucose and 10 μmol/L genipin
Fig.2 CCK-8 assay analysis on the MIN6 cells treated with Genipin The control group (NC) was cultured under normal conditions. The genipin group (Gen) was treated with 10 μmol/L genipin. The high glucose group (HG) was treated with 33 mmol/L glucose. The high glucose and genipin group (HG + Gen) was treated with 33 mmol/L glucose and 10 μmol/L genipin. Data are presented as the Mean ± SD.n = 3.Statistical significances were calculated using Student’s t-test or two-way ANOVA, *P <0.05 compared with NC group; #P <0.05 compared with HG group
与对照组(0.26 ± 0.01 ng/mL)比较,京尼平组(0.24 ± 0.01 ng/mL)MIN6细胞胰岛素释放量的差异无统计学意义(P>0.05),高糖损伤组(0.19 ± 0.01 ng/mL)胰岛素释放量显著下降(P<0.001);与高糖损伤组比较,京尼平(10 μmol/L)作用于高糖损伤组(0.30 ± 0.01 ng/mL)的胰岛素释放量显著提高(P<0.01),结果见Fig.3和Table 1。
Table 1 The change of the insulin release levels (Mean ± SD, n=3 )
Fig.3 Insulin release assays The control group (NC) was cultured under normal conditions. The genipin group (Gen) was treated with 10 μmol/L genipin. The high glucose group (HG) was treated with 33 mmol/L glucose. The high glucose and genipin group (HG + Gen) was treated with 33 mmol/L glucose and 10 μmol/L genipin. Data are shown as Mean ± SD of three independent experiments. Statistical significances were calculated using Student’s t-test or one-way ANOVA, ***P <0.001 compared with NC group; ##P <0.01 compared with HG group
京尼平(10 μmol/L)分别作用于正常细胞和高糖损伤的细胞。与对照组(0.32 ± 0.01 μmol/106cell)比较,京尼平组(0.31 ± 0.01 μmol/106cell)胰岛细胞内ATP含量的差异无统计学意义(P>0.05),高糖损伤组(0.19 ± 0.01 μmol/106cell)细胞内ATP含量显著下降(P<0.001);与高糖损伤组比较,京尼平(10 μmol/L)作用于高糖损伤的胰岛细胞48 h时,细胞内ATP含量(0.25 ± 0.01 μmol/106cell)显著提高(P<0.01),结果见Fig.4。
Fig.4 The effects of genipin on ATP levels The control group (NC) was cultured under normal conditions. The genipin group (Gen) was treated with 10 μmol/L genipin. The high glucose group (HG) was treated with 33 mmol/L glucose. The high glucose and genipin group (HG + Gen) was treated with 33 mmol/L glucose and 10 μmol/L genipin. Data are shown as Mean ± SD of three independent experiments. Statistical significances were calculated using Student’s t-test or one-way ANOVA, ***P < 0. 001 compared with NC group; ##P <0.01 compared with HG group
Data are shown as Mean ±SDof three independent experiments. Statistical significances were calculated using Student’st-test or one-way ANOVA,***P<0.001 compared with NC group;
##P<0.01 compared with HG group
与对照组(101.73 ± 8.43)比较,高糖损伤组(175.83 ± 9.51)ROS含量明显增加(P< 0. 01),而京尼平组(102.97 ± 8.21)差异无统计学意义(P>0.05);与高糖损伤组比较,京尼平组(144.27 ± 10.70)ROS含量减少(P<0.05),结果见Fig.5。
Fig.5 Effects of genipin on intracellular ROS levels The control group (NC) was cultured under normal conditions. The genipin group (Gen) was treated with 10 μmol/L genipin. The high glucose group (HG) was treated with 33 mmol/L glucose. The high glucose and genipin group (HG + Gen) was treated with 33 mmol/L glucose and 10 μmol/L genipin. Data are shown as Mean ± SD of three independent experiments. Statistical significances were calculated using Student’s t-test or one-way ANOVA, **P < 0. 01 compared with NC group; #P <0.05 compared with HG group
与对照组(0.66 ± 0.07)比较,京尼平组(0.66 ± 0.04)胰岛细胞GSH/GSSH比值的差异无统计学意义(P>0.05),高糖损伤组(0.48 ± 0.048)胰岛细胞GSH/GSSH比值明显下降(P<0.05);与高糖损伤组比较,京尼平(10 μmol/L)作用于高糖损伤的胰岛细胞48 h后,GSH/GSSH比值(0.68 ± 0.04)显著提高(P<0.01),结果见Fig.6。
Fig.6 Effects of Genipin on the GSH/GSSG ratio The control group (NC) was cultured under normal conditions. The genipin group (Gen) was treated with 10 μmol/L genipin. The high glucose group (HG) was treated with 33 mmol/L glucose. The high glucose and genipin group (HG + Gen) was treated with 33 mmol/L glucose and 10 μmol/L genipin. Data are shown as Mean ± SD of three independent experiments. Statistical significances were calculated using Student’s t-test or one-way ANOVA, *P < 0. 05 compared with NC group; ##P <0.01 compared with HG group
与对照组比较,京尼平组胰岛细胞内MDA、LDH、SOD和CAT水平的差异无统计学意义(P>0.05),高糖损伤组胰岛细胞内MDA(2.80±0.14 nmol/mg)和LDH(295.98±6.23 U/g)水平显著升高(P<0.001),SOD(3.73±0.40 U/mg)和CAT(33.33±1.78 U/mg)水平明显降低(P<0.001);与高糖损伤组比较,京尼平(10 μmol/L)作用于高糖损伤的胰岛细胞48 h时,MDA(2.09±0.14 nmol/mg)和LDH(177.64±6.83 U/g)水平显著降低(P<0.01),SOD(7.24±0.45 U/mg)和CAT(63.29±3.55 U/mg)水平明显升高(P<0.01),结果见Table 2。
Table 2 The change of the MDA,SOD,CAT and LDH levels (Mean ± SD. n=3 )
激光共聚焦检测线粒体膜电位,结果显示与对照组(1.82 ± 0.07)比较,高糖损伤组(1.15 ± 0.10)胰岛细胞中JC-1聚集体红色荧光与JC-1单体绿色荧光比值显著下降(P<0.01);与高糖损伤组比较,HG+Gen(1.40 ± 0.04)细胞中JC-1聚集体红色荧光与JC-1单体绿色荧光比值显著上升(P<0.05),结果见Fig.7。
Fig.7 Effects of genipin on intracellular MMP levels (A) MMP assays. The control group (NC) was cultured under normal conditions. The high glucose group (HG) was treated with 33 mmol/L glucose. The high glucose and genipin group (HG+Gen) was treated with 33 mmol/L glucose and 10 μmol/L genipin. (B) Quantification of MMP wherein relative MMP levels in the experimental group were normalized to the control group. Data are shown as Mean ± SD of three independent experiments. Statistical significances were calculated using Student’s t-test or one-way ANOVA, **P < 0. 01 compared with NC group; ##P <0.01 compared with HG group
Western 印迹结果显示,与对照组(UCP2 1.33 ± 0.11,GR 1.62 ± 0.08,Grx1 2.87 ± 0.11)比较,高糖损伤组(GR 1.06 ± 0.08,Grx1 1.25 ± 0.10)胰岛细胞中GR、Grx1的蛋白质表达水平显著降低(P<0.001), UCP2(1.86 ± 0.10)表达显著升高(P<0.01);与高糖损伤组比较,高糖和京尼平组细胞内GR、Grx1的蛋白质(GR 1.19 ± 0.059,Grx1 2.20 ±0.15)表达水平明显提高(P<0.05),UCP2 (1.54 ± 0.07)表达减低(P<0.05),结果见Fig.8。
Fig.8 The protein expression levels by Western blotting analysis The control group (NC) was cultured under normal conditions. The high glucose group (HG) was treated with 33 mmol/L glucose.The high glucose and genipin group (HG+Gen) was treated with 33 mmol/L glucose and 10 μmol/L genipin. Data are shown as Mean ± SD of three independent experiments. Statistical significances were calculated using Student’s t-test or one-way ANOVA, **P < 0. 01 and ***P < 0. 001 compared with NC group ; #P <0.05 compared with HG group;##P <0.01 compared with HG group
Data are shown as Mean ±SDof three independent experiments. Statistical significances were calculated using Student’st-test or one-way ANOVA,***P<0.001 compared with NC group;###P<0.001 and##P<0.01 compared with HG group
2 型糖尿病(T2DM)患者的健康管理主要是血糖检测达标,降低血糖是治疗糖尿病及其并发症的关键[9-12]。胰腺β细胞合成的胰岛素在降低血糖浓度方面发挥重要的作用。正常生理情况下,胰岛素可以维持血液中葡萄糖在正常范围内,但长期处于高糖环境中的胰岛细胞将出现氧化应激,其是胰腺β细胞凋亡的主要原因,这使得胰岛素分泌量降低[13-15]。体外高葡萄糖环境培养小鼠胰岛MIN6细胞,模拟高葡萄糖下胰岛细胞相关指标的改变,同时探讨抗氧化药物京尼平对高糖诱导损伤的MIN6细胞的作用机制。我们在开展本研究的前期,摸索了不同葡萄糖浓度和不同浓度京尼平及作用时间对MIN6细胞各项指标的影响,建立了高糖诱导的MIN6细胞损伤模型。高糖浓度为33 mmol/L,京尼平浓度为10 μmol/L。CCK-8检测高糖损伤组和京尼平组。结果显示,高糖损伤组降低MIN6细胞的存活率,而抗氧化剂京尼平10 μmol/L对MIN6细胞的存活率未见影响,京尼平作用于高糖组能提高损伤组的细胞存活率,提示京尼平对高糖损伤的小鼠胰岛MIN6细胞有一定的保护作用。
Eizirik等[16]早期发现,人体长时间处于高葡萄糖浓度下会损伤β细胞。本文中发现,京尼平不仅有效保护胰岛细胞的活性还增强了GSIS急性刺激,胰岛素释放量增加,促进葡萄糖的摄取和MIN6细胞内ATP含量的增加,改善了小鼠胰岛细胞长期高糖诱导下的细胞毒性,GSIS的改善可能与细胞内ATP水平调节相关的AMPK系统有关[17-19]。因此,京尼平可以调节胰腺β细胞对胰岛素的分泌,促使细胞对葡萄糖的吸收和代谢,京尼平又是解偶联蛋白2(Uncoupling protein 2,UCP2)的抑制剂,进而提高细胞内ATP含量[20]。
高血糖将导致机体的氧化应激,使体内抗氧化防御系统与活性氧(ROS)调节失衡[21-22]。高糖培养的细胞ROS的生成增加,抗氧化蛋白质GR和Grx1的水平降低,而高糖和京尼平组GSH/GSSG值和抗氧化蛋白质GR、Grx1的表达水平较高糖损伤组明显提高,提示京尼平可有效提高小鼠胰岛MIN6细胞在高糖环境中的抗氧化性,京尼平提高细胞内Grx1水平,Grx1可以改善细胞内胰岛素水平[23]。线粒体是细胞能量代谢的工厂,高糖培养的胰岛细胞将出现细胞氧化应激的损伤,线粒体功能异常,高糖损伤后较正常组细胞线粒体膜去极化,膜电位发生改变,JC-1法检测发现红绿荧光的比值降低,而京尼平有效改善线粒体的去极化现象,提高红绿荧光的比值。由此说明,京尼平可以抑制线粒体的去极化和凋亡,改善线粒体功能。
综上所述,通过本研究发现,京尼平对高糖损伤的小鼠胰岛细胞功能的保护有一定作用,提高胰岛素的释放量,作用的机制与减少因高糖培养产生的ROS,提高细胞内抗氧化物,改善线粒体功能有关,这将为糖尿病血糖的调节提供实验依据。