林晓莹 黄浩峰 陈浩
[摘要] 线粒体通过自噬清除受损或多余线粒体以维持线粒体稳态。线粒体分裂融合是线粒体自噬的基础,线粒体融合蛋白-2(MFN2)参与调节线粒体分裂融合。MFN2突变会引起线粒体功能障碍,导致腓骨肌萎缩等神经退行性疾病。本文主要综述了近年来MFN2功能及其在线粒体自噬及神经退行性疾病领域所取得的研究进展,旨在为相关领域进一步的研究提供参考。
[关键词] 线粒体融合蛋白-2;线粒体;线粒体自噬;神经退行性疾病
[中图分类号] R363 [文献标识码] A [文章编号] 1673-7210(2019)05(a)-0042-04
Advances in the regulation of mitochondrial dynamic Changes by MFN2
LIN Xiaoying1 HUANG Haofeng1 CHEN Hao2 LI Shupeng3 ZHAO Bin4 ZHONG Wangtao5 FENG Du1
1.Guangdong Medical University, Guangdong Province, Zhanjiang 524000, China; 2.Department of Neurology, the First Afiliated Hospital of Hainan Medical University, Hainan Province, Haikou 570100, China; 3.Department of Neurology, Zengcheng District People′s Hospital, Guangdong Province, Guangzhou 511300, China; 4.Guangdong Key Laboratory of Age-related Cardiac-Cerebral Vascular Disease, Institute of Neurology, the Afiliated Hospital of Guangdong Medical University, Guangdong Province, Zhanjiang 524000, China; 5.Department of Neurology, the Afiliated Hospital of Guangdong Medical University, Guangdong Province, Zhanjiang 524000, China
[Abstract] To maintain mitochondria homeostasis, mitochondria remove damaged or excess mitochondria by autophagy. Mitochondria fission and fusion process is the basis of mitophagy, and mitofusion-2 (MFN2) is involved in the process of regulating mitochondria fission and fusion. Mutations in MFN2 could cause mitochondria dysfunction and even lead to neurodegenerative diseases such as Charcot-Marie-Tooth. This paper review recent research progress of MFN2 function and its effect on mitochondria autophagy and neurodegenerative disease, aiming at providing reference for further research in related fields.
[Key words] Mitofusion-2; Mitochondria; Mitophagy; Neurodegenerative disease
線粒体为细胞正常生长代谢提供必需的能量,参与细胞众多的生理活动,例如:氧化磷酸化、三羧酸循环、脂肪酸代谢、糖异生、增殖、衰老、凋亡等。线粒体自噬对线粒体形态、数量和质量的调控起到重要作用,主要是通过自噬清除细胞内受损或多余的线粒体[1]。线粒体分裂融合是线粒体自噬的基础。线粒体融合过程包括线粒体外膜(OMM)融合和线粒体内膜(IMM)融合,在哺乳动物细胞中,MFN1/2参与线粒体外膜融合,OPA1参与线粒体内膜融合。线粒体分裂涉及的蛋白有Drp1、Fis1、MFF等。线粒体融合、分裂相关蛋白质亦参与线粒体自噬,分子突变可引起线粒体功能障碍,导致神经退行性疾病,如帕金森病、腓骨肌萎缩等[2]。
1 MFN1/2的结构和功能
1.1 MFN1/2的结构
线粒体融合蛋白在哺乳动物中分为两种,即MFN1和MFN2。MFN1由位于人3号染色体(3q26.33)上的18个外显子编码,741个氨基酸组成;MFN2由人1号染色体(1p36.22)上的20个外显子编码,757个氨基酸组成,两次跨线粒体外膜的线粒体外膜蛋白。MFN1和MFN2具有同源性,有约80%相似的结构相关序列[3]。MFN1/2结构大致分为氨基末端GTP酶区域、七肽重复结构域HR1、跨膜区域和七肽重复结构域HR2。GTP酶区域可连接水解GTP[4]。MFN1和MFN2在GTP酶活性上表现不同,MFN1有较高的GTP酶活性,而MFN2对GTP有较高的亲和力[5]。HR1区域具有干扰脂质双层结构诱导膜融合的作用[6]。HR2区域介导MFN1-MFN2或者MFN2-MFN2寡聚化,形成反式平行卷曲螺旋二聚体,将相邻的两个线粒体系链以维持线粒体网状结构[7]。GTP酶区域、HR2区域均暴露在胞质。
1.2 MFN2的生理功能
MFN2和MFN1共同维持线粒体网状结构,通过MFN1-MFN1相互作用实现有效的线粒体系链后[5],依赖GTP酶区域水解GTP和线粒体膜电位实现线粒体融合[8-9]。MFN2突变可阻碍线粒体融合,引起线粒体系链中间体累积[5],这提示线粒体系链依赖MFN1,而线粒体融合依赖MFN2。线粒体在MFN1敲除细胞中呈现均一的球状,在MFN2敲除细胞中则是大小不一的颗粒状[10]。
MFN2影响线粒体能量代谢。在L6E9肌管细胞中,MFN2表达量下调可引起线粒体膜电位降低,细胞耗氧量减少,葡萄糖氧化受到抑制[11]。MFN2下调可抑制OXPHOS复合物Ⅰ、Ⅱ、Ⅲ、Ⅴ亚基的表达,降低其酶活性[12]。心肌細胞中敲除MFN2,可通过阻碍萜类化合物的合成引起辅酶Q缺乏而影响线粒体氧化呼吸链[13]。由此可见,MFN2是线粒体三羧酸循环和氧化呼吸所必需的。
MFN2影响细胞葡萄糖水平。MFN2可干扰胰岛素信号传导,肝脏组织敲除MFN2后产生糖耐量下降、胰岛素抵抗的现象[14]。有研究[15]发现,MFN2上调可改善棕榈酸诱导的骨骼肌细胞胰岛素抵抗,MFN2敲低会促进氧化应激反应,增加活性氧(ROS)的产生,并增强磷酸化c-Jun氨基末端激酶(JNK)和活化胰岛素信号传导分子NF-κB。MFN2对维持细胞葡萄糖稳态、稳定胰岛素敏感性至关重要。
MFN2影响细胞增殖和凋亡。在B细胞淋巴瘤细胞系BJAB中,敲低内源性MFN2,发现细胞增殖速率上升,MFN2可通过N端与Raf-1、C端与Ras相互作用而抑制Ras-Raf-ERK信号传导通路,从而抑制细胞增殖[16]。在HeLa细胞中下调MFN2,可干扰自噬体和溶酶体融合,阻碍自噬降解过程,从而抑制细胞增殖[17]。通过探索MFN2与凋亡的关系,发现心肌细胞在氧化应激作用下,其MFN2水平增高,引起细胞凋亡[18],但MFN2下调亦可通过增强神经酰胺的通路引起心肌细胞凋亡[19]。由此推测,MFN2上调或者下调均可引起相同的细胞反应,但其涉及的机制可能不同,而在不同的细胞系中,MFN2可引起不同的细胞反应。MFN2是否存在维持细胞稳态的调节平衡点值得进一步研究。
MFN2参与构建内质网-线粒体连接膜[20]。内质网-线粒体连接膜通过MFN2调节线粒体形态、细胞器间Ca2+转运[21]、脂质运输、参与内质网应激和线粒体自噬。近期有研究[22]对MFN2在内质网-线粒体连接膜的系链作用持反对意见,即在不同细胞类型中,突变或消除MFN2反而增加内质网-线粒体间的偶联。因此,MFN2在内质网-线粒体连接膜中所发挥的具体作用仍需探讨。
2 MFN2与线粒体自噬
2.1 线粒体动态平衡与线粒体自噬
线粒体网状结构的维系有赖于分裂融合、自噬的生理活动。线粒体自噬是通过自噬清除受损或多余的线粒体,自噬体膜延伸包裹受损或多余的线粒体形成自噬小体,再与溶酶体融合形成自噬溶酶体降解内容物。ROS、缺氧、饥饿、细胞衰老的刺激条件可引起线粒体自噬[23]。线粒体自噬涉及分子机制中的PINK1-Parkin通路研究较多。PINK1是丝氨酸/苏氨酸激酶,经过线粒体外膜复合物和线粒体内膜复合物转位,锚定于线粒体内膜。在正常的线粒体中,PINK1会被线粒体加工肽酶(MPP)和早老素相关菱形样蛋白(PARL)连续降解,但在膜电位下降的线粒体中,PINK1转位到线粒体内膜(IMM)受到抑制,使得PINK1在线粒体外膜处累积,PINK1与外膜转运酶(TOM)形成复合物,发生磷酸化。PINK1为Parkin的上游作用分子,Parkin为E3泛素连接酶。磷酸化的PINK1磷酸化Parkin的第175位和第217位苏氨酸,促进Parkin从胞浆移位到受损的线粒体,介导线粒体自噬的发生[24]。PINK1亦磷酸化泛素分子,PINK1-Parkin促进泛素与受损线粒体结合,进而被泛素结合自噬受体识别,进一步活化线粒体自噬途径[25]。
2.2 MFN2参与线粒体自噬
MFN2可影响线粒体形态动力学参与线粒体自噬。PINK1-Parkin可泛素化修饰MFN2,泛素化MFN2经蛋白酶体降解增多抑制了线粒体融合,导致线粒体断裂成颗粒状,促进线粒体自噬。
MFN2可直接参与线粒体自噬。MFN2是Parkin在线粒体上的底物,PINK1可磷酸化MFN2第111位苏氨酸和第442位丝氨酸,Parkin与磷酸化MFN2结合定位于线粒体,磷酸化MFN2亦可增强PINK1-Parkin泛素化MFN2的生物效应[26]。泛素化MFN2抑制线粒体融合,断裂的线粒体被自噬小泡包裹形成自噬体,与溶酶体融合降解。另外,在线粒体应激条件下,MFN2可被JNK磷酸化,引起Parkin泛素化MFN2,同时诱导Huwe1募集到线粒体,通过其BH3结构域与MFN2相互作用,增强MFN2的降解[27]。
MFN2可影响自噬体和溶酶体融合参与线粒体自噬。自噬体与溶酶体融合受阻可导致自噬体累积,阻碍自噬降解。在心肌细胞中敲除MFN2,可导致自噬体大量积累[28]。在神经元缺血/再灌注模型中,亦发现MFN2下调可通过抑制自噬体与溶酶体融合加剧缺血再灌注损伤,过表达MFN2可逆转自噬体累积的现象[29]。
MFN2可通过影响内质网-线粒体连接膜的系链参与线粒体自噬。PINK1-Parkin可通过磷酸化泛素化MFN2使MFN2复合物上的p97解体,破坏线粒体-内质网偶联结构,导致线粒体与内质网解离,从而促进线粒体自噬,加速线粒体降解[30]。
3 MFN2与神经退行性疾病
越来越多研究认为线粒体与神经退行性疾病密切相关,例如:帕金森病、腓骨肌萎缩。然而,MFN2是否与其发病机制相关呢?
3.1 帕金森病
帕金森病(PD)是以運动和精神改变为临床特征的神经退行性疾病。在特发性PD患者的黑质组织中,其MFN2表达降低,线粒体分裂呈增加的趋势,而在百草枯(PQ)诱导的PD模型中亦发现类似的变化,而过表达MFN2可阻断PQ引起的线粒体断裂,并抑制了多巴胺能神经元缺失[31]。MFN2是否参与到PD发病机制中?近期有研究[32]发现,MitoQ可通过激活过氧化物酶体增殖物激活受体γ辅激活子1α(PGC-1α)以增强MFN2依赖的线粒体融合途径,进而保护6-羟基多巴胺(6-OHDA)诱导的PD模型中的多巴胺能神经元。由此推测,MFN2在PD中起到调节线粒体融合保护神经元的作用,但其涉及的机制仍需进一步探究。
3.2 腓骨肌萎缩
腓骨肌萎缩(CMT)是以远端肌肉萎缩和感觉丧失为临床特征的神经退行性疾病,分为脱髓鞘型(CMT1)和轴突型(CMT2)。在中国,MFN2突变在CMT2发病中占到18%,是最常见的病因[33],有常染色体显性遗传倾向。野生型MEF细胞中线粒体沿着细胞骨架正常顺向或逆向运动,但在MFN2KO MEF细胞中,线粒体融合障碍,断裂肿胀成球形,出现不协调运动。CMT2A患者大多可检测到MFN2蛋白错构,GTP酶区域约占50%,但不影响GTP酶结合水解GTP[34]。由此推测,CMT2A的线粒体融合受损有可能是涉及GTP酶区域的蛋白质之间相互作用引起,但仍需进一步研究。MFN2蛋白错构亦可发生在HR2区域[35],影响线粒体融合。有研究[36-37]设计微肽调节MFN2的HR1-HR1非活性状态转变到NR2-HR2活性状态,促进线粒体融合,逆转CMT2A中的线粒体融合障碍,这为治疗CMT2A提供了调节线粒体融合的治疗角度。
4 讨论与展望
近年来,关于MFN2的研究越来越多,逐渐发现MFN2参与了线粒体新陈代谢、线粒体自噬、MAMs的构成、细胞能量生成、信号传导、增殖凋亡等生理活动,对细胞的生长发育有着重要意义。MFN2异常可导致线粒体功能障碍并引起细胞代谢异常,甚至产生病理性改变,如2型糖尿病、肥胖等代谢性疾病、肿瘤、心脑血管疾病、神经退行性疾病等。然而,目前关于MFN2在各细胞生理活动、疾病发生发展中涉及的分子通路和具体作用机制的研究并不完善,仍有未知的领域等待探索。
[参考文献]
[1] Yoo SM,Jung YK. A Molecular Approach to Mitophagy and Mitochondrial Dynamics [J]. Mol Cells,2018,41(1):18-26.
[2] Rodolfo C,Campello S,Cecconi F. Mitophagy in neurodegenerative diseases [J]. Neurochem Int,2018,117:156-166.
[3] Santel A,Frank S,Gaume B,et al. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells [J]. J Cell Sci,2003,116(Pt 13):2763-2774.
[4] Bourne HR,Sanders DA,McCormick F. The GTPase superfamily: conserved structure and molecular mechanism [J]. Nature,1991,349(6305):117-127.
[5] Ishihara N,Eura Y,Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity [J]. J Cell Sci,2004,117(Pt 26):6535-6546.
[6] Daste F,Sauvanet C,Bavdek A,et al. The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion [J]. EMBO Rep,2018,19(6).pii:e43637.
[7] Koshiba T,Detmer SA,Kaiser JT,et al. Structural basis of mitochondrial tethering by mitofusin complexes [J]. Science,2004,305(5685):858-862.
[8] Meeusen S,McCaffery JM,Nunnari J. Mitochondrial fusion intermediates revealed in vitro [J]. Science,2004,305(5691):1747-1752.
[9] Cao YL,Meng S,Chen Y,et al. MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion [J]. Nature,2017,542(7641):372-376.
[10] Chen H,Detmer SA,Ewald AJ,et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development [J]. J Cell Biol,2003,160(2):189-200.
[11] Bach D,Pich S,Soriano FX,et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity [J]. J Biol Chem,2003,278(19):17 190-17 197.
[12] Pich S,Bach D,Briones P,et al. The Charcot-Marie-Tooth type 2A gene product,Mfn2,up-regulates fuel oxidation through expression of OXPHOS system [J]. Hum Mol Genet,2005,14(11):1405-1415.
[13] Mourier A,Motori E,Brandt T,et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels [J]. J Cell Biol,2015,208(4):429-442.
[14] Sebastian D,Hernandez-Alvarez MI,Segales J,et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis [J]. Proc Natl Acad Sci U S A,2012,109(14):5523-5528.
[15] Nie Q,Wang C,Song G,et al. Mitofusin 2 deficiency leads to oxidative stress that contributes to insulin resistance in rat skeletal muscle cells [J]. Mol Biol Rep,2014,41(10):6975-6983.
[16] Chen KH,Dasgupta A,Ding J,et al. Role of mitofusin 2 (Mfn2) in controlling cellular proliferation[J]. FASEB J,2014,28(1):382-394.
[17] Ding Y,Gao H,Zhao L,et al. Mitofusin 2-deficiency suppresses cell proliferation through disturbance of autophagy [J]. PLoS One,2015,10(3):e0121328.
[18] Shen T,Zheng M,Cao C,et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis [J]. J Biol Chem,2007,282(32):23 354-23 361.
[19] Parra V,Eisner V,Chiong M,et al. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis [J]. Cardiovasc Res,2008,77(2):387-397.
[20] de Brito OM,Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria [J]. Nature,2008,456(7222):605-610.
[21] Bidaux G,Gordienko D,Shapovalov G,et al. 4TM-TRPM8 channels are new gatekeepers of the ER-mitochondria Ca(2+) transfer [J]. Biochim Biophys Acta,2018,1865(7):981-994.
[22] Filadi R,Greotti E,Turacchio G,et al. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling [J]. Proc Natl Acad Sci U S A,2015,112(17):E2174-E2181.
[23] Vigie P,Camougrand N. [Role of mitophagy in the mitochondrial quality control] [J]. Med Sci(Paris),2017,33(3):231-237.
[24] Eiyama A,Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells [J]. Curr Opin Cell Biol,2015,33:95-101.
[25] Harper JW,Ordureau A,Heo JM. Building and decoding ubiquitin chains for mitophagy [J]. Nat Rev Mol Cell Biol,2018,19(2):93-108.
[26] Chen Y,Dorn GW. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria [J]. Science,2013,340(6131):471-475.
[27] Leboucher GP,Tsai YC,Yang M,et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis [J]. Mol Cell,2012,47(4):547-557.
[28] Zhao T,Huang X,Han L,et al. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes [J]. J Biol Chem,2012,287(28):23 615-23 625.
[29] Peng C,Rao W,Zhang L,et al. Mitofusin 2 Exerts a Protective Role in Ischemia Reperfusion Injury Through Increasing Autophagy [J]. Cell Physiol Biochem,2018,46(6):2311-2324.
[30] McLelland GL,Goiran T,Yi W,et al. Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy [J]. Elife,2018,7:e32866.
[31] Zhao F,Wang W,Wang C,et al. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: Implications for idiopathic Parkinson′s disease [J]. Biochim Biophys Acta,2017,1863(6):1359-1370.
[32] Xi Y,Feng D,Tao K,et al. MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1alpha [J]. Biochim Biophys Acta,2018,1864(9):2859-2870.
[33] Xie Y,Li X,Liu L,et al. MFN2-related genetic and clinical features in a cohort of Chinese CMT2 patients [J]. J Peripher Nerv Syst,2016,21(1):38-44.
[34] Beresewicz M,Boratynska-Jasinska A,Charzewski L,et al. The Effect of a Novel c.820C>T (Arg274Trp) Mutation in the Mitofusin 2 Gene on Fibroblast Metabolism and Clinical Manifestation in a Patient [J]. PLoS One,2017, 12(1):e0169999.
[35] Dankwa L,Richardson J,Motley WW,et al. A mutation in the heptad repeat 2 domain of MFN2 in a large CMT2A family [J]. J Peripher Nerv Syst,2018,23(1):36-39.
[36] Franco A,Kitsis RN,Fleischer JA,et al. Correcting mitochondrial fusion by manipulating mitofusin conformations [J]. Nature,2016,540(7631):74-79.
[37] Rocha AG,Franco A,Krezel AM,et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A [J]. Science,2018, 360(6386):336-341.
(收稿日期:2018-10-11 本文編辑:王 蕾)