于志辉,董晶荧,王亚楠,汪夏燕*
PFOS暴露对肺癌细胞中信号通路的影响
于志辉1,董晶荧1,王亚楠2,汪夏燕2*
(1.北京工业大学环境科学系,北京 100124;2.北京工业大学化学与生物系,绿色催化与分离北京市重点实验室,环境安全与生物效应卓越中心,北京 100124)
为探讨全氟辛烷磺酸盐(PFOS)产生肺毒性的分子机制,采用细胞计数试剂盒(CCK-8)方法测定不同浓度PFOS对A549细胞活性的影响,并用二代测序方法测定PFOS暴露对A549细胞中miRNAs表达的影响,预测异常表达miRNAs的靶基因.通过生物信息学分析推断靶基因参与的信号通路及潜在的生物学功能.结果显示,低浓度PFOS(<200μmol/L)促进A549细胞增殖,高浓度PFOS抑制细胞增殖.暴露于300μmol/L PFOS中24h的A549细胞中108个miRNAs表达量显著上调,63个miRNAs表达量显著下调.差异表达miRNAs通过Ras、Rap1、HIF-1、ErbB和VEGF等信号通路参与细胞增殖、代谢和发育等生物学过程.这表明PFOS可通过影响细胞增殖和诱发炎症反应对肺造成威胁.
全氟辛烷磺酸盐(PFOS);miRNA;信号通路
全氟烷基化合物(PFASs)由于具有良好的疏水疏油性,已被广泛应用于灭火剂、食品包装、纺织品、纸张、洗发剂、表面活性剂等工商业产品加工过程[1-2].由于C-F键具有强极性,在强紫外线、高温及其他化学作用的条件下具有较强的稳定性,并且很难通过微生物及高等动物的代谢作用来降解,因此PFASs可以稳定的存在于环境中并在生物中积累[3-4].已有研究表明PFASs广泛分布于大气、水、土壤等多种环境介质中,甚至在职业暴露和非职业暴露人群的血液、尿液、胆汁、母乳及脐带血中均有检测出PFASs[5-10].全氟辛烷磺酸盐(PFOS)是PFASs的最终代谢产物,分布最为广泛.PFOS可通过胃肠道、呼吸道和皮肤进入人体[11],且半衰期高达5a以上[2].研究表明,PFOS具有肝[12]、肺[13]、肾[14]、免疫[15]、神经[16]、生殖发育[17]等多种毒性,是一类具有全身多器官和组织毒性的有机污染物.其中,PFOS对肝、神经毒性的相关研究相对较多.PFOS的肝毒性主要表现为脂肪肝、肝肿大、肝细胞增生和肝细胞氧化损伤等[18-19].此外,PFOS通过诱导神经细胞产生过量的活性氧或炎症因子,对神经细胞造成氧化损伤或神经炎症[16,20].
PFOS在非职业暴露者肺中的含量仅次于肝[21],可诱发多种肺部疾病.流行病学研究表明,血清PFOS浓度与儿童哮喘病加剧具有相关性[22].Qin等[23]通过评估儿童哮喘病患者的肺功能,进一步证明儿童哮喘病患者血清中PFOS的浓度与其肺功能呈显著性负相关.与其他组织毒性相同,PFOS也主要通过诱导肺组织分泌过量的炎症因子和活性氧来造成肺毒性[24],但研究者对其中的调控机制以及涉及的信号通路知之甚少,对PFOS的肺毒性机制还没有形成系统完善的认识.
microRNA(miRNA)是一类由内源基因编码的长度约为18~24个核苷酸的非编码单链RNA分子,存在于几乎所有的真核生物及少数病毒中,通过与mRNA的完全或不完全互补诱导mRNA降解或抑制其翻译,实现转录后水平的基因表达调控.基于miRNA的生物学功能,已经有很多学者从miRNA分子水平探究PFOS对生物体的毒性机制[25-27]. PFOS可引起妊娠初期人滋养层细胞的miR-29b含量升高,进而使得多种蛋白的DNA甲基化和蛋白乙酰化,蛋白表达量降低引起ROS含量升高[25].ROS含量的升高与子痫前期等妊娠并发症相关.此外,研究表明,PFOS通过增加SH-SY5Y细胞中miR-22的相对表达量,抑制BDNF mRNA的表达,影响BDNF- ERK-CREB信号通路,为PFOS的神经毒性提供了新的实验证据[26].这些研究为PFOS的肺毒性机制研究提供了新思路.然而,与miRNA相关的PFOS对肺毒性机制的研究未见报道.
本文采用体外细胞毒性试验的方法,以人非小细胞肺癌A549细胞为模型,从miRNA表观遗传调控角度研究PFOS对肺损伤可能的作用机制.采用细胞计数试剂盒(CCK-8)方法检测细胞活性,探讨PFOS对A549的细胞增殖毒性.二代测序筛选PFOS暴露后差异表达的miRNAs并进行基因组百科全书(KEGG)和基因本体论(GO)富集分析,推测参与PFOS肺毒性的信号通路,深入探究PFOS肺毒性的表观遗传调控机制.
人非小细胞肺癌细胞A549购自中国医学科学院基础医学研究所细胞资源中心(北京,中国);杜氏改良Eagle培养基(DMEM)、胎牛血清(FBS)、磷酸盐缓冲溶液(PBS)、青链霉素双抗溶液(PS)、0.25%胰蛋白酶-乙二胺四乙酸(胰蛋白酶-EDTA)购自美国Thermo Fisher Gibco公司;PFOS(纯度98%)购自北京百灵威科技有限公司;二甲基亚砜(DMSO)购自上海阿拉丁生化科技股份有限公司;CCK-8试剂盒购自北仁化学科技(北京)有限公司;TRIzol试剂购自美国Thermo Fisher公司;miRcute miRNA提取分离试剂盒、miRcute增强型miRNA cDNA 第一链合成试剂盒、目的基因和内参基因引物、miRcute增强型miRNA 荧光定量检测试剂盒(SYBR Green)购自天根生化科技(北京)有限公司.
将A549细胞置于含10% FBS、1% PS的DMEM培养液中,于37℃、饱和湿度、含5% CO2的培养箱中培养.将PFOS溶于DMSO中,配制500mmol/L PFOS储备液储存于-20°C,使用前用培养液进行稀释.为避免对细胞产生毒性,实验组中DMSO的终体积分数不能超过0.1%,对照组为只含0.1% DMSO的培养液,空白组为不含细胞的0.1% DMSO的培养液.
收集对数生长期的细胞制备细胞悬液.取100µL密度为4×104个/mL的A549细胞悬液接种于96孔板中培养.孵育24h后弃去培养液,每孔加入200µL浓度分别为0,50,100,200,300,400,500μmol/L PFOS的培养液,每组6个平行.在标准条件下分别培养24,48,72h后弃去培养液,每孔加入100µL含10% CCK-8的培养液于37℃条件下孵育0.5h.用酶标仪(美国Molecular Devices公司)检测各孔在450nm处吸光度(A),吸光度与细胞活性呈正比.细胞活性的计算公式为:
考虑到A549细胞倍增周期约为21h[28],且其在PFOS中暴露24h的半数抑制浓度(IC50)在400~ 500μmol/L之间,因此,将A549细胞在300μmol/L PFOS中暴露24h研究PFOS暴露对A549细胞中miRNAs表达的影响.取1mL密度为2×106个/mL的A549细胞悬液加入75cm2培养瓶中,加入适量的培养液,将细胞吹打均匀.待细胞贴壁生长24h后,移去上清液,实验组加入适量PFOS浓度为300μmol/L的培养液,对照组加入适量含0.1% DMSO的培养液,每组设置3个平行.待细胞暴露24h之后,用0.25%的胰蛋白酶将细胞消化下来,利用TRIzol试剂抽提总RNA.委托天根生化科技(北京)有限公司基于Illumina HiSeq 2000测序平台对总RNA样品进行测序分析.
使用R包edgeR对实验组和对照组样品中所有miRNAs进行差异分析,TMM方法归一化.采用miRanda软件对具有显著性差异的miRNAs靶基因进行预测,得到miRNAs和靶基因间的对应关系.将得到的靶基因基于topGO进行GO功能富集分析.GO共包含3个类群,分别描述基因的分子功能(MF)、细胞组分(CC)、参与的生物学过程(BP).本文主要对靶基因的生物学过程进行富集分析,并对富集分析结果进行图形化展示.在生物体内,不同基因相互协调行使其生物学功能,通过KEGG数据库进行通路显著性富集,以确定差异表达的miRNAs靶基因参与的最主要的生化代谢途径和信号传导途径.
参照miRcute miRNA提取分离试剂盒提取实验组和对照组细胞中的miRNAs.测定提取的miRNAs纯度,保证所有样品的A260/A280在1.8~2之间.使用PCR仪和荧光定量PCR仪(美国Applied Biosystems公司),结合miRcute增强型miRNA cDNA第一链合成试剂盒和miRcute增强型miRNA荧光定量检测试剂盒(SYBR Green)对miRNAs样品进行反转录和实时荧光定量PCR(RT-qPCR),每组设置3个平行,具体实验操作参照产品说明书.数据处理以U6为内参基因,对目标基因表达量进行标准化,计算DCt值.以对照组作为参照因子,其倍数变化为1,实验组基因表达差异相对于参照因子基因表达的倍数为2﹣△△Ct.分析实验组和对照组中miRNAs的相对表达量,并与测序结果进行比较.
所有实验数据均采用GraphPad Prism 8软件进行统计学分析,结果以“均值±标准差”表示.采用单因素方差分析方法比较各组之间的差异,当<0.05时认为差异具有统计学意义.
CCK-8检测细胞活性结果(图1)显示,A549细胞在高浓度(>300μmol/L)PFOS中暴露24,48,72h后细胞活性显著降低(<0.0001),且细胞活性随PFOS浓度增大而减小.经过不同浓度的PFOS暴露24h后,细胞活性的变化范围为47.9%~118.0%.其中,当PFOS浓度为50和100μmol/L时,细胞活性显著增加(<0.001).经过不同浓度的PFOS暴露48和72h后,细胞活性的变化范围分别为12.1%~106.5%和2.1%~108.9%.当PFOS浓度<300μmol/L,细胞活性与对照组相比无显著性差异.当PFOS浓度为400, 500μmol/L时,细胞活性显著降低.A549细胞在300μmol/L的PFOS中暴露48h后,细胞活性无显著性变化,但暴露72h后,细胞活性显著降低(<0.05).
图1 PFOS暴露后的A549细胞活性
*<0.05;***<0.001; ****<0.0001
本文利用二代测序技术筛查了PFOS暴露后miRNAs的表达情况,结果表明,在300μmol/L的PFOS中暴露24h可引起A549细胞中171个miRNAs异常表达(FC>2.0,<0.05)(图2).其中,108个miRNAs(含miR-377-3p和miR-3199两个已知miRNAs及106个未知miRNAs)表达量显著上升,63个miRNAs(含已知的miR-4709-5p和62个未知miRNAs)表达量显著下降.
表达量显著上升的108个miRNAs可作用于42009个靶mRNAs,表达量显著下降的63个miRNAs对应于30098个靶mRNAs.通过KEGG数据库分析差异表达miRNAs靶基因的功能及其相互作用,预测到靶基因可能参与的信号通路包括——大鼠肉瘤基因(Ras)信号通路、Ras相关蛋白1(Rap1)信号通路、ErbB信号通路、缺氧诱导因子1(HIF-1)信号通路、血管内皮生长因子(VEGF)信号通路、磷脂酶D信号通路、神经营养因子信号通路和雷帕霉素靶蛋白(mTOR)信号通路等(图3).GO富集分析靶基因参与的生物学过程,结果表明差异表达miRNAs靶基因参与的生物学过程包括——细胞增殖过程、生物调节过程、代谢过程、细胞过程、应激反应过程、多细胞生物过程、细胞组分组织或合成过程、细胞定位过程、发育过程、免疫系统过程、多组织过程、生物附着过程和复制过程等(图4).
图2 PFOS暴露后A549细胞中miRNAs的火山
图3 差异表达miRNAs靶基因KEGG通路富集分析
图4 差异表达miRNAs靶基因GO(BP)富集分析
采用RT-qPCR方法验证差异表达的miR- 377-3p、miR-3199和miR-4709-5p的表达量,结果如图5所示,miR-4709-5p与测序结果一致,在PFOS实验组中显著下调;miR-377-3p和miR-3199表达量无明显变化,与测序结果不一致.
图5 差异表达miRNAs的验证
由于PFOS在环境介质中的广泛存在使得人们开始关心它对人类健康的影响.研究表明,PFOS对包括肺在内的多种组织和系统均有毒性作用[29]. PFOS的肺毒性与DNA甲基化、ROS含量变化相关.然而这些变化都不能充分解释PFOS的肺毒性机理.已有研究表明PFOS可引起妊娠初期人滋养层细胞、大鼠肝脏和大脑组织中的miRNAs异常表达.因此,本文以容易培养且对外加作用因子敏感的非小细胞肺癌A549细胞为研究对象,探讨PFOS的肺毒性作用机制.
PFOS通过调节细胞周期影响细胞增殖,而细胞的异常增殖往往与癌症的发生有关[30].Jabeen等[31]通过研究表观遗传修饰在细胞增殖和凋亡中的作用对PFOS影响A549细胞活性的机制进行了阐述,发现低浓度条件下(<100μmol/L)细胞周期蛋白E和细胞周期蛋白A表达量增加,促进A549细胞增殖,当PFOS浓度增至400μmol/L时,两种细胞周期蛋白表达量降低,造成细胞活性显著降低.Cui等[32]研究PFOS暴露后人正常肝细胞HL-7702的蛋白组学发现,50μmol/L的PFOS可诱导HL-7702细胞中多种细胞周期蛋白及相应的细胞周期蛋白依赖性激酶表达量增加,从而促进细胞增殖.但当PFOS浓度大于200μmol/L时,细胞活性呈剂量依赖性降低.同样的,本文结果显示,当A549细胞在50和100μmol/L PFOS中暴露24h后,细胞活性显著增加,当PFOS浓度大于300μmol/L时细胞活性显著降低,且细胞活性随PFOS浓度增大而减小.这说明PFOS可能通过影响细胞增殖对肺产生毒性.
本文结果显示PFOS暴露可引起A549细胞中多个miRNAs异常表达,这些异常表达的miRNAs可作用于多个靶基因,参与Ras、Rap1、ErbB、HIF-1和VEGF等多个信号通路.Ras信号通路协同下游多个信号通路调控细胞生长、增殖、分化和凋亡[33].Ras基因的异常表达与肿瘤的发生发展密切相关,在30%非小细胞肺癌中发现Ras突变[34],因此,Ras被认为是肿瘤发生的重要因素.Rap1是Ras通路的重要调节因子和介质,其参与的信号通路与肺癌细胞的增殖和分化相关[35].ErbB可促进细胞增殖,激活ErbB通路可能诱发癌症.Zhang等[36]研究发现持续抽烟可使人体内多个miRNAs异常表达,进而影响ErbB通路促进肺癌的发生. Kruspig等[37]的研究表明,ErbB通过与Ras通路相互作用促进Kras突变肺癌细胞的增殖,因此,含ErbB抑制剂的药物可能有利于Kras突变肺癌的治疗.VEGF在肺发育及肺结构形成和维持过程中具有重要作用,其低表达会导致肺组织形态结构、功能异常[38].Zhang等[39]研究妊娠期PFOS暴露对子代大鼠肺发育的影响,发现PFOS能够引起子代大鼠肺部炎症因子白介素-1β和白介素-18的明显增加,且与炎症小体相关的蛋白表达也显著升高.同时,在肺泡发育和肺部血管形成过程中具有重要作用的VEGF及HIF-1的表达也受到抑制,诱发子代大鼠支气管肺发育不良.本研究的预测结果说明PFOS可能通过miRNAs调控Ras、Rap1、ErbB、VEGF和HIF-1等信号通路影响细胞增殖、代谢和发育等生物学过程.
测序和RT-qPCR结果均表明PFOS可引起A549细胞中miR-4709-5p表达显著下降.miR- 4709-5p靶基因KEGG通路分析显示,miR-4709-5p可参与促分裂原活化的蛋白激酶(MAPK)信号通路,在细胞增殖、分化和凋亡过程中具有重要作用[40]. MAPK蛋白还参与体内多种氧化应激和炎症反应过程并发挥重要调控作用[41]. Shi等[42]将斑马鱼胚胎暴露于不同浓度的PFOS中,发现在斑马鱼幼虫中出现氧化应激反应,且与MAPK通路相关的基因表达异常,推测这与PFOS诱导的细胞凋亡有关.研究表明miR-4709与结肠癌有关,miR-4709作为一种致癌基因可通过作用于NR3C2促进人结肠癌细胞的增殖和迁移[43-44].Omidi等[45]通过生物信息学分析发现miR-4709-5p与红斑狼疮疾病相关,可作为一种潜在的生物标志物.由于miR-4709-5p与多种疾病的发生有关,本文推测PFOS通过下调miR- 4709-5p调控MAPK信号通路诱发肺部疾病.
4.1 PFOS暴露可影响人非小细胞肺癌A549细胞增殖,低浓度PFOS(<200μmol/L)促进A549细胞增殖,高浓度PFOS抑制细胞增殖,且抑制作用随PFOS浓度增大而增大.
4.2 PFOS暴露可引起A549细胞中171个miRNAs异常表达,其中,108个miRNAs表达量显著上调,63个miRNAs表达量显著下调.异常表达的miRNAs可能通过调控Ras、Rap1、ErbB、HIF-1和VEGF等信号通路影响细胞生长、增殖、分化、凋亡、代谢和发育等生物学过程.通过筛选差异表达的miRNAs来预测与PFOS肺毒性相关的靶基因是第一步,还需要进一步验证靶基因的准确性以及作为生物标志物进行疾病诊断的特异性和灵敏性.
[1] Paul A G, Jones K C, Sweetman A J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate [J]. Environmental Science & Technology, 2009,43(2):386-392.
[2] Buck R C, Franklin J, Berger U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins [J]. Integrated Environmental Assessment and Management, 2011,7(4):513-541.
[3] Zeng Z T, Song B, Xiao R, et al. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies [J]. Environment International, 2019,126:598-610.
[4] 郭萌萌,崔文杰,刘晓玉,等.黄渤海区域水产品中全氟烷基物质的分布特征 [J]. 中国环境科学, 2020,40(8):3424-3432.
Guo M M, Cui W J, Liu X Y, et al. Distribution of perfluoroalkyl substances in aquatic products in coastal and adjacent areas of the Yellow Sea and Bohai Sea, China [J]. China Environmental Science, 2020,40(8):3424-3432.
[5] Giesy J P, Kannan K, Jones P D. Global biomonitoring of perfluorinated organics [J]. The Scientific World Journal, 2001,1: 627-629.
[6] Wang J H, Pan Y T, Wei X F, et al. Temporal trends in prenatal exposure (1998-2018) to emerging and legacy per- and polyfluoroalkyl substances (PFASs) in cord plasma from the Beijing Cord Blood Bank, China [J]. Environmental Science & Technology, 2020,54(20):12850-12859.
[7] Ehresman D J, Froehlich J W, Olsem G W, et al. Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals [J]. Environmental Research, 2007,103(2): 176-184.
[8] 孙殿超,龚 平,王小萍,等.拉萨河全氟化合物的时空分布特征研究 [J]. 中国环境科学, 2018,38(11):4298-4306.
Sun D C, Gong P, Wang X P, et al. Special distribution and seasonal variation of perfluoroalkyls substances in Lhasa River Basin, China [J]. China Environmental Science, 2018,38(11):4298-4306.
[9] 刘晓湾,赵 亮,张 鸿,等.深圳市表层土中氟化物组成及分布 [J]. 中国环境科学, 2015,35(2):499-505.
Liu X W, Zhao L, Zhang H, et al. Composition and distribution of the fluoride compounds in topsoil samples of Shenzhen [J]. China Environmental Science, 2015,35(2):499-505.
[10] 李 潇,仝 彤,李 健,等.母乳中全氟化合物的污染水平与婴儿暴露评估 [J]. 中国环境科学, 2015,35(11):3475-3480.
Li X, Tong T, Li J, et al. Perfluorinated compounds in human milk from Beijing: levels and exposure assessment of nursing infant [J]. China Environmental Science, 2015,35(11):3475-3480.
[11] Olsem G W, Huang H Y, Helzlsouer K J, et al. Historical comparison of perfluorooctanesulfonate, perfluorooctanoate, and other fluorochemicals in human blood [J]. Environmental Health Perspectives, 2005,113(5):539-545.
[12] Han R, Zhang F, Wan C, et al. Effect of perfluorooctane sulphonate- induced Kupffer cell activation on hepatocyte proliferation through the NF-κB/TNF-α/IL-6-dependent pathway [J]. Chemosphere, 2018, 200:283-294.
[13] Mao Z X, Xia W, Wang J, et al. Perfluorooctane sulfonate induces apoptosis in lung cancer A549 cells through reactive oxygen species- mediated mitochondrion-dependent pathway [J]. Journal of Applied Toxicology, 2013,33(11):1268-1276.
[14] Chou H C, Wen L L, Chang C C, et al. From the cover: L-carnitine via PPARγ- and Sirt1-dependent mechanisms attenuates epithelial-mesenchymal transition and renal fibrosis caused by perfluorooctanesulfonate [J]. Toxicological Sciences, 2017,160(2):217-229.
[15] Soloff A C, Wolf B J, White N D, et al. Environmental perfluorooctane sulfonate exposure drives T cell activation in bottlenose dolphins [J]. Journal of Applied Toxicology, 2017,37(9):1108-1116.
[16] Chen N, Li J, Li D, et al. Chronic exposure to perfluorooctane sulfonate induces behavior defects and neurotoxicity through oxidative damages, in vivo and in vitro [J]. PLoS One, 2014,9(11):e113453.
[17] Tang L L, Wang J D, Xu T T, et al. Mitochondrial toxicity of perfluorooctane sulfonate in mouse embryonic stem cell-derived cardiomyocytes [J]. Toxicology, 2017,382:108-116.
[18] Wan H T, Zhao Y G, Wei X, et al. PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport [J]. Biochimica et Biophysica Acta, 2012,1820(7):1092-1101.
[19] Han R, Hu M X, Zhong Q, et al. Perfluorooctane sulphonate induces oxidative hepatic damage via mitochondria-dependent and NF-κB/ TNF-α-mediated pathway [J]. Chemosphere, 2018,191:1056-1064.
[20] Chen X X, Nie X K, Mao J M, et al. Perfluorooctane sulfonate mediates secretion of IL-1β through PI3K/AKT NF-κB pathway in astrocytes [J]. Neurotoxicology and Teratology, 2018,67:65-75.
[21] Maestri L, Negri S, Ferrari M, et al. Determination of perfluorooctanoic acid and perfluorooctanesulfonate in human tissues by liquid chromatography/single quadrupole mass spectrometry [J]. Rapid Communication in Mass Spectrometry, 2006,20(18):2728- 2734.
[22] Humblet O, Diaz-Ramirez L G, Balmes J R, et al. Perfluoroalkyl chemicals and asthma among children 12-19years of age: NHANES (1999-2008) [J]. Environmental Health Perspectives, 2014,122(10): 1129-1133.
[23] Qin X D, Qian Z M, Dharmage S C, et al. Association of perfluoroalkyl substances exposure with impaired lung function in children [J]. Environmental Research, 2017,155:15-21.
[24] Sorli J B, Lag M, Ekeren L, et al. Per- and polyfluoroalkyl substances (PFASs) modify lung surfactant function and pro-inflammatory responses in human bronchial epithelial cells [J]. Toxicology in Vitro, 2020,62:104656.
[25] Sonkar R, Kay M K, Choudhury M. PFOS modulates interactive epigenetic regulation in first-trimester human trophoblast cell line HTR-8/SVneo[J]. Chemical Research in Toxicology, 2019,32(10): 2016-2027.
[26] Li W, He Q Z, Wu C Q, et al. PFOS disturbs BDNF-ERK-CREB signalling in association with increased microRNA-22 in SH-SY5Y cells [J]. BioMed Research International, 2015,2015:302653.
[27] Wang F, Liu W, Jin Y H, et al. Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers [J]. Environmental Toxicology, 2015,30(6):712-723.
[28] 陈卫强,戚好文,吴昌归,等.双氢青蒿素抗人肺腺癌A549细胞生长的实验研究 [J]. 中国肺癌杂志, 2005,8(2):85-88.
Chen W Q, Qi H W, Wu C G, et al. Effect of dihydroartem isinin on proliferation of human lung adenoeareinoma cell line A549 [J]. Chinese Journal of Lung Cancer, 2005,8(2):85-88.
[29] Xing J L, Wang G, Zhao J C, et al. Toxicity assessment of perfluorooctane sulfonate using acute and subchronic male C57BL/6J mouse models [J]. Environmental Pollution, 2016,210:388-396.
[30] Evan G I, Vousden K H. Proliferation, cell cycle and apoptosis in cancer [J]. Nature, 2001,411(6835):342-348.
[31] Jabeen M, Fayyaz M, Irudayaraj J. Epigenetic modifications, and alterations in cell cycle and apoptosis pathway in A549 lung carcinoma cell line upon exposure to perfluoroalkyl substances [J]. Toxics, 2020,8(4):1-18.
[32] Cui R N, Zhang H G, Guo X J, et al. Proteomic analysis of cell proliferation in a human hepatic cell line (HL-7702) induced by perfluorooctane sulfonate using iTRAQ [J]. Journal of Hazardous Materials, 2015,299:361-370.
[33] Fang J Y, Richardson B C. The MAPK signalling pathways and colorectal cancer [J]. Lancet Oncology, 2005,6(5):322-327.
[34] Wang X S, Feng W M, Peng C, et al. Targeting RNA helicase DHX33 blocks Ras-driven lung tumorigenesis in vivo [J]. Cancer Science, 2020,111(10):3564-3575.
[35] Jin X, Di X, Wang R M, et al. RBM10 inhibits cell proliferation of lung adenocarcinoma via RAP1/AKT/CREB signalling pathway [J]. Journal of Cellular and Molecular Medicine, 2019,23(6):3897-3904.
[36] Zhang L M, Wang H L, Wang C L. Persistence of smoking induced non-small cell lung carcinogenesis by decreasing ERBB pathway- related microRNA expression [J]. Thoracic Cancer, 2019,10(4): 890-897.
[37] Kruspig B, Monteverde T, Neidler S, et al. The ERBB network facilitates KRAS-driven lung tumorigenesis [J]. Science Translational Medicine, 2018,10(446):1-11.
[38] Myint M Z, Jia J, Adlat S, et al. Effect of low VEGF on lung development and function [J]. Transgenic Research, 2021,30(1):35- 50.
[39] Zhang H S, Lu H M, Yu L, et al. Effects of gestational exposure to perfluorooctane sulfonate on the lung development of offspring rats [J]. Environmental Pollution, 2020,272:115535.
[40] Peng Q, Deng Z Y, PAN H, et al. Mitogen-activated protein kinase signaling pathway in oral cancer [J]. Oncology Letters, 2018, 15(2):1379-1388.
[41] Kim E K, Choi E J. Compromised MAPK signaling in human diseases: an update [J]. Archives of Toxicology, 2015,89(6):867-882.
[42] Shi X J, Zhou B S. The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos [J]. Toxicological Sciences, 2010,115(2):391-400.
[43] Yu M, Yu H L, Li Q H, et al. miR-4709 overexpression facilitates cancer proliferation and invasion via down regulating NR3C2 and is an unfavorable prognosis factor in colon adenocarcinoma [J]. Journal of Biochemical and Molecular Toxicology, 2019,33(12):e22411.
[44] Li F X, Li Q, Wu X H. Construction and analysis for differentially expressed long non-coding RNAs and MicroRNAs mediated competing endogenous RNA network in colon cancer [J]. PLoS One, 2018,13(2):e0192494.
[45] Omidi F, Hosseini S A, Ahmadi A, et al. Discovering the signature of a lupus-related microRNA profile in the gene expression omnibus repository [J]. Lupus, 2020,29(11):1321-1335.
Impacts of PFOS exposure on signaling pathways in lung cancer cells.
YU Zhi-hui1, DONG Jing-ying1, WANG Ya-nan2, WANG Xia-yan2*
(1.Department of Environmental Sciences, Beijing University of Technology, Beijing 100124, China;2.Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China)., 2021,41(10):4878~4884
The effects of different concentrations of perfluorooctane sulfonate (PFOS) on the viability of A549 cells were determined by the CCK-8 method. The effects of PFOS exposure on miRNAs expression in A549 cells were detected by the next-generation sequencing method to investigate the molecular mechanism of pulmonary toxicity caused by PFOS. Target genes with abnormal expression of miRNAs were predicted, and their involved signaling pathways and potential biological functions were inferred through bioinformatics analysis. The results showed that a low concentration of PFOS (<200μmol/L) promoted the proliferation of A549 cells, while a high concentration of PFOS inhibited the proliferation of A549 cells. The expression levels of 108 miRNAs and 63 miRNAs in A549 cells exposed to 300 μmol/L PFOS for 24 h were significantly up-regulated and down-regulated. Differentially expressed miRNAs participate in biological processes such as cell proliferation, metabolic process, and developmental process through signaling pathways such as Ras, Rap1, HIF-1, ErbB, VEGF and so on. This study suggested that PFOS can threaten the lung by affecting cell proliferation and inducing inflammation.
perfluorooctane sulfonate (PFOS);miRNA;signaling pathways
X503.1
A
1000-6923(2021)10-4878-07
于志辉(1961-),女,北京人,教授,博士,主要从事环境毒理学和环境电化学方面研究.发表论文10余篇.
2021-03-03
北京高校卓越青年科学家计划项目(BJJWZYJH0120191000 5017)
* 责任作者, 教授, xiayanwang@bjut.edu.cn