刘金江 李贺 马晓普 张新刚
摘 要: 针对人工智能导论课程的教学情况,分析了实践教学过程中存在的问题,根据新工科人才的要求,对人工智能导论课程的实践教学模式进行初探,设计了相应的实践平台、实验内容、案例库、校企合作及实践教学等,以期为人工智能导论实践教学模式改革提供参考。
关键词: 新工科; 人工智能导论; 实践教学; 校企合作; 案例库
中图分类号:G420 文献标识码:A 文章编号:1006-8228(2021)05-91-03
Discussion on the practical teaching mode of "Introduction to Artificial Intelligence"
course for New Engineering Education
Liu Jinjiang, Li He, Ma Xiaopu, Zhang Xingang
(School of Computer Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China)
Abstract: According to the teaching situation of "Introduction to Artificial Intelligence" course, this paper analyzes the problems existing in the process of practical teaching, explores the practical teaching mode for the course according to the requirements of talents in accordance with New Engineering Education, and designs the corresponding practice platform, experiment content, case base, school enterprise cooperation and practical teaching, in order to provide reference for the reform of practical teaching mode of "Introduction to Artificial Intelligence" course.
Key words: New Engineering Education; introduction to artificial intelligence; practical teaching; school enterprise cooperation; case base
0 引言
隨着物联网、大数据、5G及人工智能等信息技术的发展,为了应对中国产业变革及新一轮的科技革命,适应“中国制造2025”国家战略需要及产业经济创新发展,同时将国际工程教育思想本土化,“新工科”应运而生[1]。信息技术发展催生出了人工智能相关的专业,国内高校纷纷设立了智能科学与技术专业。近年来,人工智能技术的发展引领着人类社会正逐渐走进智能社会,人工智能将深刻影响人类社会。随着人工智能的进一步发展,高等教育的价值也将进一步提高[2]。因此,各高校应尽快建立与新工科相一致的智能科学与技术专业,并深入研究我国人工智能的人才培养体系、课程设置、实验平台及成果转化等方法,改革传统人工智能的教育教学方法,形成有新工科特色的智能科学与技术专业工程教育方法。
由于传统的专业是按学科划分的,因此,目前的智能科学与技术专业课程体系以理论为主,强调学科知识的系统性和完备性[3]。人工智能导论作为智能科学与技术专业的核心课程,同时也是人工智能“入门性”和“引导性”的课程。但是,目前人工智能导论的课程设置上主要存在课程内容陈旧、实践课程不足、教材理论过强、教学模式老旧及实践教学与企业需求不适应等问题。尤其是人工智能导论课程,缺乏实践教学将会降低学生学习人工智能的兴趣和积极性。因此,为了解决这些问题,并使高校跟上人工智能时代的脚步,抓住高等教育发展的新机遇,进行面向新工科的人工智能导论实践教学模式探索具有重要的现实意义。
1 人工智能对新工科人才的新要求
1.1 具备多学科交叉知识
人工智能导论是一个多个学科交叉而成的一门课程。人工智能导论主要包括知识系统、智能搜索技术、脑科学、机器学习、神经网络、支持向量机、专家系统、智能计算及分布式智能等内容[4]。因此,一个合格人工智能专业人才需要具备多学科知识。
1.2 具备多领域应用能力
人工智能导论的应用领域广泛,基本包含工业、农业及社会生活的各个行业(如工业生产、通信、医疗、金融、社会治安、交通领域及服务业等)[5]。人工智能导论课程要求学生在学好理论前提下也应该掌握各行业的相关知识,只有这样才能提高人工智能技术在各领域的应用。
1.3 具备人工智能创新创业精神
目前,创新驱动发展成为了我国现阶段发展的重要力量,人工智能成为经济发展的新引擎[5]。在大众创业、万众创新的号角下,人工智能技术作为创新创业过程中的一个大趋势。因此,当今新形势下培养具有创新创业精神的人工智能专业人才对我国经济发展及大学毕业生创新创业具有重要意义。
1.4 具备人工智能人文素养
人的内在品质就是人文素养,人文科学的知识水平和研究能力是人文素养的重要组成部分,人文素养是人文科学体现出来的以人为研究对象和中心的精神[6]。人工智能对人类社会带来的是便利还是带来灾难,关键是使用者的思想道德和人文素养。因此,培养具有人文精神的人工智能专业人才具有重要的意义。
2 人工智能导论课程教学现状
目前,许多高校已经认识到传统的人工智能导论课程已经不能适应社会和学生发展的需要。尤其是地方普通高校在师资、科研及学科力量薄弱情况下进行人工智能导论的实践教学。目前人工智能导论的课程设置上主要存在的问题如下:
⑴ 本科生课程内容陈旧。近年来,随着云计算、大数据、5G等信息技术的快速发展,也带动人工智能技术发展日新月异。对于高校来说,要紧跟人工智能技术前沿,传授学生的知识也要紧跟人工智能的发展。目前,虽然也出现了不少新的人工智能导论教材,但在课堂上能够教学的新内容仍然不多,教材内容仍然集中在传统的人工智能技术(如问题求解、知识表示、归结原理及经典推理等技术)上。
⑵ 研究生课程内容重叠。研究生的人工智能导论课程应作为本科生课程的一个延续,但部分高校对研究生人工智能导论课程的教学重视不够。很多本科生已经学过的内容在研究生阶段又进行了重复。因此,在新工科背景下培养高层次的人工智能人才,就必须要在研究生阶段加强新工科人才实践能力的培养,选择合理的人工智能导论课程,改革研究生阶段人工智能导论的教学理念和教学模式。
⑶ 实践课程不足。实践教学是提高人工智能新工科人才能力的重要路径。目前,大多数院校的人工智能导论课程理论与实践联系不够紧密,对学生实践能力的培养不够,只知道理论,而不进行实际的实践应用就不能成为合格的人工智能新工科人才。另外,大多数地方高校的人工智能实验室建设投入不足,实验条件差,验证性的实验较多,实验课时不足,学生对人工智能新技术的接触不够。
⑷ 人工智能导论教材理论性过强。目前,现有的人工智能导论教材以理论为主,缺乏人工智能实践内容。在课程教学过程中学生经常会感觉索然无味,当實践课程开设不足时,这种情况会非常明显。学生会渐渐的对人工智能导论课程失去兴趣和热情,最终会导致课程的教学质量和效果下降,不能达到新工科人工智能专业人才培养的预期。
⑸ 教学模式老旧。人工智能导论是多学科交叉的课程,课程内容理论性强、抽象、多知识点是新工科的特点。然而,大多数地方高校仍然采用过去的课堂教学模式(即“教师讲、学生听”的教学模式),这种单向灌输的教学方式以教师为主,学生的主动性不够,只是在被动接收知识。学校这种重视理论不重视实践的教学模式,在一定程度上影响了新工科人才的实践能力,从而导致教学内容与企业社会需求脱节。
3 人工智能导论实践教学初探
3.1 人工智能导论课程实践平台建设
为了提高学生对实践教学的兴趣,南阳师范学院计算机科学与技术学院在人工智能导论授课过程中广泛应用多种计算机实验教学平台,如采用开源的PaddlePaddle百度飞桨深度学习平台,希冀一体化人工智能实践教学平台及大数据综合实验平台。教师可以在实践教学过程中方便的使用这些平台进行授课,学生也可以在课堂中跟随老师完成相关实验,并能够在课下进行相关实验练习及提交作业。
3.2 人工智能导论课程实验内容优化
在人工智能导论实践教学过程中,以学生兴趣为导向,开展相关应用课程实验,南阳师范学院计算机科学与技术学院对人工智能导论实验课程内容进行优化。优化后的主要实验课程包括搜索优化算法实现、智能计算实现、贝叶斯分类实验、最近邻算法实验、机器学习实验及神经网络实验。最后,通过期末课程设计进一步提高学生解决实际问题及创新创业的能力。
3.3 人工智能导论实践教学模式改革
⑴ 校企合作
为使人工智能导论实践教学不与企业脱节,校企合作是关键。应积极派遣教师进企业进修,了解企业需求,并提高教师的工程能力。从2018年以来,南阳师范学院计算机科学与技术学院每年暑假期间累积派遣教师58人/次前往百度、中兴、科大讯飞、神舟数码及江苏传智播客公司等进修培训。同时已经在固定时间邀请相关企业讲师到学校进行人工智能方面的项目教学。建立起了具有地方区域特色的师资队伍及校企协调的实践教学模式,从而避免人工智能导论课程实践与企业实际脱节。
⑵ “双导师”负责制
人工智能导论实践课程实行“双导师”制,邀请企业中实践经验丰富的人才任教或任职,校企合作建立实践教师指导团队,改革教学策略及教学方法,以项目为牵引,将人工智能导论实践课程作为第二课堂学分。还要积极制定人工智能相关的科技作品竞赛的奖励机制,积极引导学生参加各种人工智能相关的比赛,从而进一步提高学生在创新实践方面的能力。
⑶ 采用案例教学法
以案例导入进行教学,提高学生兴趣。首先,从人工智能竞赛的部分赛事中、(如百度的人工智能大赛,“2020年全国人工智能大赛”,“2020中国高校计算机大赛人工智能创意赛”等)中选取贴近实际问题的案例作为人工智能导论实践课程的案例来源。然后,采用目前主流的人工智能开发软件进行算法代码的编写,引导学生采用Python语言调用第三方接口库进行算法的实现。最后,让学生使用主流的编程语言(如C++、Java等)开发完善算法或进行系统设计与实现。
4 结束语
在新工科背景下,人工智能导论作为智能科学与技术专业的基础核心课程,人工智能人才培养应注重提高学生解决问题的能力。在这种背景下,笔者结合近年来了解到的企业需求和上课的实际,对人工智能导论实践教学模式进行初探,具体如下:①校企合作,构建人工智能实践平台;②建立案例库,优化实践的内容;③校企“双导师”制,采用案例教学,从而进一步提高学生在创新实践方面的能力。
参考文献(References):
[1] 杨晴,王晓墨,成晓北等.新工科背景下的新能源科学与工程专业——哈佛大学工科教育在学科交叉方面的启示[J].高等工程教育研究,2019.S1:23-24,33
[2] 李明媚,成希,罗娟.人工智能时代的高等教育之变与不变[J].黑龙江高教研究,2020.2:41-44
[3] 陈义明,刘桂波,张林峰等.智能科学与技术专业课程体系建设的理论思考[J].计算机教育,2020.309(9):103-107
[4] 刘永,胡钦晓.论人工智能教育的未来发展:基于学科建设的视角[J].中国电化教育,2020.2:37-42
[5] 姚琳,石志国.人工智能课程体系与教学方法研究[J].中国大学教学,2019.10:19-22
[6] 刘冬颖.新工科背景下大学生人文素质教育探索[J].中国大学教学,2018.11:26-29