圆中易错点分析

2021-06-07 05:30耿恒考特级教师
初中生世界 2021年19期
关键词:圆周角错因勾股定理

文 耿恒考(特级教师)

“圆”是初中数学的重要内容之一,也是许多同学学习的难点。由于对“圆”的认识、理解和掌握难度较大,因此,同学们在学习中应及时汇总自己的常错问题,精心选择有代表性的题目,通过细心分析归纳来化解难点。

一、忽略了点与圆的不同位置关系

例1平面内有一个⊙O和一点P,若点P到⊙O上的点的最大距离为8cm,最小距离为2cm,求⊙O的半径长。

【错因分析】对于这个问题,同学们更多的关注点在“点到圆上的最大距离和最小距离”上,无暇顾及点与圆的不同位置关系,往往只会考虑点P在圆外的一种情况,而忽略了点P在圆内的情形。

【正确解答】当点P在⊙O外时(如图1),直线PO交⊙O于点A、B,点P到⊙O上的点的最大距离PB=8cm,最小距离PA=2cm,所以⊙O的半径r=3cm;当点P在⊙O内时(如图2),直线PO交⊙O于点A、B,点P到⊙O上的点的最大距离PB=8cm,最小距离PA=2cm,所以⊙O的半径r=5cm。

图1

图2

二、忽略了一条弦所对的弧有两条、所对的圆周角有两组

例2如图3,AB是直径为8cm 的⊙O的一条弦,如果AB=4cm,那么弦AB所对的弧长为______,弦AB所对的圆周角为______°。

图3

【错因分析】同学们关注较多的是劣弧,往往忽略一条弦所对的弧有两条,且两条弧的和为一个圆周长;一条弦所对的圆周角有两组,且它们是互补关系。

【正确解答】⊙O中弦AB所对的劣弧长为,弦AB所对的优弧长为。⊙O中弦AB所对的圆周角为30°或150°。

三、忽略了弦与圆心的不同位置关系

例3已知,内直径为100cm 的下水管道的横截面是圆,截面圆中水面的宽度为80cm,求管道内水面的深度。

【错因分析】同学们的思维常将水面定位于圆心的下方(如图4),忽视了水面在圆心上方的情形(如图5)。

【正确解答】如图4、图5,过点O作OD⊥AB,垂足为点C,交⊙O于点D,则AC=BC=40cm。连接OA,根据勾股定理,得OC=。

图4

图5

当水面在圆心O的下方时,管道内水面的深度为50-30=20(cm);

当水面在圆心O的上方时,管道内水面的深度为50+30=80(cm)。

例4已知,线段AB、CD是半径为5cm的⊙O中的两条弦,且AB∥CD,AB=6cm,CD=8cm,求两条弦AB、CD之间的距离。

【错因分析】对于这类问题,同学们习惯于关注两条平行弦在圆心同侧,忽略了两条平行弦在圆心异侧的情形,导致漏解。

【正确解答】如图6、图7,过点O作OE⊥AB,垂足为点E,交CD于点F,则OF⊥CD,则AE=3cm,CF=4cm。连接OA、OC,根据勾股定理,得3(cm)。

图6

图7

当平行弦AB、CD在圆心O的同侧时,弦AB、CD之间的距离为4-3=1(cm);

当平行弦AB、CD在圆心O的异侧时,弦AB、CD之间的距离为4+3=7(cm)。

四、忽略了圆的轴对称性质

例5已知⊙O的半径为5cm,AB为直径,弦CD⊥AB,垂足为点E,CD=6,求AC的长。

【错因分析】对于这个问题,根据题意,同学们习惯于画出图8,而忽略了与之对称的图9。

图8

【正确解答】如图8,连接AC、OC。根据勾股定理,得OE=4cm,AE=5-4=1(cm)。在Rt△AEC中,由勾股定理得。如图9,连接AC、OC。根据勾股定理,得OE=4cm,AE=5+4=9(cm)。在Rt△AEC中,由勾股定理,得。

图9

本题也可以通过连接AC、OC、BC,利用相似三角形或射影定理来解决。

猜你喜欢
圆周角错因勾股定理
《勾股定理》拓展精练
反思错因正确解答
圆周角平分线长度的一般性结论
理清错因,让“幂”运算强起来
一元一次方程解法中的错因分析及解决
基于圆周角的力学问题
求圆周角常见错误分析
对勾股定理的三点看法
用勾股定理就对了!
圆中的特殊角