缪龙 陈龙 赵瑜 鲍宏伟
摘要:文中研究了有限p-可解群中二极大子群的相关性质。采用极小阶反例的方法,并结合极大子群的指数,得出p-可解群中强二极大子群的判别条件,同时还探讨了弱二极大子群本身的性质。从而揭示了二极大子群对p-可解群结构的重要影响。
關键词:p-可解群;极大子群;二极大子群;CAP-子群
中图分类号:O152.1
DOI:10.16152/j.cnki.xdxbzr.2020-02-012
On second maximal subgroups of p-solvable groups
MIAO LongCHEN LongZHAO Yu BAO Hongwei3
Abstract: In this paper, the properties of second maximal subgroups in finite p-solvable groups have been studied. By using the method of counterexample of minimal order and combining with the indices of maximal subgroups, the criterion of strong second maximal subgroups in p-solvable groups has been obtained and further the properties of weak second maximal subgroups have been discussed. Hence the influences of second maximal subgroups on the structure of p-solvable groups have been revealed.
Key words: p-solvable group; maximal subgroup; second maximal subgroup; CAP-subgroup
众所周知,二极大子群是有限群论中最基本的概念之一,许多学者已对其作了很多研究[1-7]。二极大子群可以分为强二极大子群和弱二极大子群两种类型,具体可参考下文定义4。特别地,1980 年,Plfy和Pudlak在文献[1]中证明了可解群G中包含强二极大子群的极大子群个数为1+q(其中q为素数方幂)。随后,Feit和Lucchini分别在文献[2]和[5] 中证明了群G为非可解群时上述结果不成立。1995 年,Flavell 在文献[8]中给出了群G中包含强二极大子群的极大子群个数的上界。2019年,孟沆洋和郭秀云在文献[9]中讨论了可解WSM-群的性质。另一方面,Gaschütz在文献 [10]中提出了子群覆盖远离的性质(简称CAP-性质),是对子群正规性的一个有意义的推广。随后,许多学者利用子群的CAP性质研究了有限群的结构[11-14]。作为上述工作的继续,本文将研究具有CAP性质的二极大子群对p-可解群构造的影响。
文中所考虑的群均是有限的,M<[KG-*2/3]·G表示子群M 是群G 的极大子群,群G的极小正规子群L记作L·[TXX-] G,max(G,H)表示群G中所有包含子群H 的极大子群的集合,HG=∩[DD(X]g∈G[DD)]Hg表示包含于子群H 的群G 的极大正规子群。未涉及的概念和符号参见文献[15]。
参考文献:
[1]PLFY P P,PUDLAK P.Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups [J]. Algebra Universalis, 1980,11(1):22-27.
[2]FEIT W. An interval in the subgroup lattice of a finite group which is isomorphic to M7 [J]. Algebra Universalis, 1983, 17(1):220-221.
[3] PLFY P P. On Feit′s examples of intervals in subgroup lattices[J]. Journal of Algebra, 1988, 116(2): 471-479.
[4]KHLER P. M7 as an interval in a subgroup lattice[J]. Algebra Universalis, 1983, 17(1):263-266.
[5]LUCCHINI A. On imprimitive groups with small degree[J]. Rendiconti del Seminario Matematico della Universita di Padova, 1991, 86: 131-142.
[6]LUCCHINI A. Intervals in subgroup lattices of finite groups[J]. Communications in Algebra, 1994, 22(2): 529-549.
[7]LUCCHINI A. Representation of certain lattices as intervals in subgroup lattices[J]. Journal of Algebra, 1994, 164(1): 85-90.
[8]FLAVELL P. Overgroups of second maximal subgroups[J]. Archiv Der Mathematik, 1995, 64(4): 277-282.
[9]MENG H Y, GUO X Y. Weak second maximal subgroups in solvable groups[J]. Journal of Algebra, 2019, 517(1): 112-118.
[10]GASCHTZ W. Praefrattini gruppen [J]. Archiv Der Mathematik, 1962, 13(12): 418-426.
[11]TOMKINSON M J. Cover-avoidance properties in finite soluble groups[J]. Canadian Mathematical Bulletin, 1976, 19(2): 213-216.
[12]EZQUERRO L M. A contribution to the theory of finite supersoluble groups[J]. Rendiconti del Seminario Matematico della Universita di Padova, 1993, 89: 161-170.
[13]GUO X Y, SHUM K P. Cover-avoidance properties and the structure of finite groups[J]. Journal of Pure and Applied Algebra, 2003, 181(2/3): 297-308.
[14]LIU J J, LI S R, SHEN Z C, et al. Finite groups with some CAP-subgroups[J]. Indian Journal of Pure and Applied Mathematics, 2011, 42(3): 145-156.
[15]郭文彬. 群類论[M]. 北京:科学出版社, 1997.
[16]LIU X L, DING N Q. On chief factors of finite groups[J]. Journal of Pure and Applied Algebra, 2007, 210(3): 789-796.
[17]BALLESTER-BOLINCHES A, EZQUERRO L M. Classes of Finite Groups[M].Amsterdam: Springer, 2006.
[18]徐明曜. 有限群导引(上)II[M].北京:科学出版社, 1999.
[19]BRAY H G, DESKINS W E, JOHNSON D, 等. 幂零与可解之间[M]. 张远达, 文志雄, 朱德高, 等译. 武汉:武汉大学出版社, 1988.
(编 辑 张 欢)
收稿日期:2020-01-10
基金项目:国家自然科学基金资助项目(11871062);江苏省自然科学基金资助项目(BK20181451)
作者简介:缪龙,男,江苏扬州人,教授,博士生导师,从事群论研究。