零和自由半环上的e-可逆矩阵

2020-04-29 10:47赵晓璐邵勇

赵晓璐 邵勇

摘要:文中研究了交换的零和自由半环上的e-可逆矩阵。通过e-可逆矩阵所具有的性质,给出了e-可逆矩阵的等价刻画。借助e-可逆矩阵、e-可逆对角矩阵及置换矩阵之间的内在联系,给出了e-可逆矩阵半群的一个确定的极大子群的半直积分解。

关键词:零和自由半环;e-可逆矩阵;极大子群;半直积

中图分类号:O151.21

DOI:10.16152/j.cnki.xdxbzr.2020-02-014

e-invertible matrices over zerosumfree semirings

ZHAO Xiaolu, SHAO Yong

Abstract: In this paper, the e-invertible matrices over commutative zerosumfree semirings are studied. Through the properties of e-invertible matrices, the equivalent characterizations of e-invertible matrices are given. The semidirect product decomposition of a certain maximal subgroup of the e-invertible matrix semigroup is given by investigating the internal relation among e-invertible matrices, e-invertible diagonal matrices and permutation matrices.

Key words: zerosumfree semiring; e-invertible matrix; matrix semigroup; semidirect product

众所周知,布尔代数、模糊代数、分配格、坡等都是交换的零和自由半环。从20世纪50年代开始,很多学者都致力于零和自由半环上可逆矩阵的研究。1952年,Luce[1]讨论了至少含有两个元素的布尔代数上的矩阵,证明了矩阵是可逆的当且仅当它是正交矩阵;1988年,Zhao[2]证明了模糊代数上的矩阵是可逆的当且仅当它是置换矩阵;1991年,Zhao[3]得到了分配格上矩阵可逆的充要条件;2004年,Han[4]等给出了坡矩阵可逆的等价刻画;2007年,Tan[5]研究了交换的零和自由半环上的可逆矩阵,得到了矩阵可逆的充要条件。2018年,Zhang 和Shao[6-7]将可逆矩阵的概念进行了推广,给出了半环上e-可逆矩阵的定义,并且研究了交换半环上e-可逆矩阵,给出其等价刻画。本文主要研究交换的零和自由半环上的e-可逆矩阵,给出交换的零和自由半環上e-可逆矩阵的一些等价刻画和e-可逆矩阵半群的极大子群中元素的基本形式,进一步得到极大子群的结构。

1 预备知识

本节将给出文中要用到的定义以及e-可逆矩阵的相关引理。

参考文献:

[1]LUCE R D.A note on Boolean matrix theory[J]. Proceedings of the American Mathematical Society, 1952, 3(3):382-388.

[2]赵飏. 模糊矩阵的逆[J].辽宁教育学院学报, 1998,15(5):37-37.

ZHAO Y.Inverse of fuzzy matrix[J]. Journal of Liaoning Educational Institute, 1998, 15(5):37-37.

[3]ZHAO C K.Invertible conditions for a matrix over distributive lattice[J].Acta Scientiarum Naturalium Universitatis Neimongol, 1991, 22(4):477-480.

[4]HAN S C, LI H X. Invertible incline matrices and Cramer′s rule over inclines[J]. Linear Algebra and its Applications, 2004,389:121-138.

[5]TAN Y J. On invertible matrices over antirings[J].Linear Algebra and its Applications,2007,423(2/3):428-444.

[6]张丽霞, 邵勇.关于交换半环上一类矩阵的研究 [J].计算机工程与应用, 2017, 53(20):56-60.

ZHANG L X, SHAO Y. Study on a class of matrices over commutative semirings[J]. Computer Engineering and Applications, 2017,53(20): 56-60.

[7]ZHANG L X,SHAO Y.e-invertible matrices over commutative semirings[J].Indian Journal of Pure and Applied Mathematics, 2018, 49(2):227-238.

[8]GOLAN J S. Semirings and their Applications [M].London:Kluwer Academic Publishers, 1999.

[9]VECHTOMOV E M. Two general structure theorems on submodules, Abelian Groups and Modules[J]. Tomsk State University,2000, 15:17-23.

[10]REUTENAUER C, STRAUBING H. Inversion of matrices over a commutative semiring [J]. Journal of Algebra, 1984, 88(2):350-360.

[11]DOLZAN D, OBLAK P. Invertible and nilpotent matrices over antirings [J]. Linear Algebra and its Applications, 2009, 430(1):271-278.

[12]TAN Y J. On invertible matrices over commutative semirings [J]. Linear and Multilinear Algebra,2013,61(6):710-724.

[13]SIRASUNTORN N, UDOMSUB N.Inversion of matrices over Boolean semirings [J].Thai Journal of Mathematics, 2009, 7(1):105-113.

[14]MORA W, WASANAWICHIT A, KEMPRASIT Y. Invertible matrices over idempotent semirings[J].Chamchuri Journal of Mathematics, 2009, 1(2):55-61.

[15]SOMBATBORIBOON S, MORA W, KEMPRASIT Y. Some results concerning invertible matrices over semirings[J].Science Asia, 2011,37(2):130-135.

[16]SARARNRAKSKUL R I, SOMBATBORIBOON S, LERTWICHITSILP P. Invertible matrix over semifields [J].East-West Journal of Mathematics, 2010, 12(1): 85-91.

[17]杨阳, 任苗苗, 邵勇. 保持ai-半環上矩阵的Moore-Penrose逆的线性算子[J].计算机工程与应用, 2015,51(8):37-41.

YANG Y, REN M M, SHAO Y.Linear operators preserving Moore-Penrose inverses of matrices over ai-semirings[J]. Computer Engineering and Applications, 2015, 51(8): 37-41.

[18]陈艳平, 谭宜家.关于半环上矩阵的广义逆[J].福州大学学报(自然科学版),2007,35(6):797-801.

CHEN Y P, TAN Y J. On the generalized inverse of matrices over a semiring[J]. Journal of Fuzhou University(Natural Science Edition),2007,35(6):797-801.

[19]尹娇娇, 邵勇, 韩金.反环上的e-可逆矩阵 [J].山东大学学报(理学版), 2019, 54(10):6-12.

YIN J J, SHAO Y, HAN J. e-invertible matrix over antirings[J]. Journal of Shandong University(Natural Science), 2019, 54(10):6-12.

[20]张后俊, 储茂权.交换半环上半线性空间的维数[J].山东大学学报(理学版), 2015, 50(6):45-52.

ZHANG H J, CHU M Q. Dimensions of semilinear spaces over commutative semirings[J].Journal of Shandong University(Natural Science), 2015, 50(6): 45-52.

[21]ALPERIN J L, BELL R B. Groups and Representations[M]. New York: Springer-Verlag, 1995.

(编 辑 张 欢)

收稿日期:2020-02-18

基金项目:国家自然科学基金资助项目(11971383,11801239)

作者简介:赵晓璐,女,河南焦作人,从事半环代数理论的研究。

通信作者:邵勇,男,陕西户县人,教授,从事半环代数理论的研究。