陈雨婷
摘 要:“综合与实践”活动具有丰富的育人价值,其实施不能蜻蜓点水、浮光掠影。自主学习能力的生成,是数学“综合与实践”活动的价值取向。从问题出发,以探究作为手段,以创造作为学习形态。通过问题的驱动、探究的引领以及创造的升华,通过“综合与实践”活动的思维、探究、创造,不断促进学生综合素养的提升!
关键词:小学数学;自主学习能力;深度学习
“综合与实践”活动是小学阶段数学四大内容的领域之一,其重要性不言而喻。但在数学教学实践中,笔者发现,“综合与实践”活动的实施窄化、低效等问题层出不穷。有教师甚至无视这一部分内容的存在,进而产生“零实施”现象。“综合与实践”活动具有丰富的育人价值,其实施不能蜻蜓点水、浮光掠影。“综合与实践”活动应当致力于培育学生的问题意识、应用意识和创新意识,应当致力于培育学生的活动经验。自主学习能力的生成,是数学“综合与实践”活动的价值取向。
■一、以“问题”为驱动,驱动学生活动探索
“问题”是“综合与实践”活动的载体、媒介,能让学生明晰探索方向。在“综合与实践”活动中,教师要设置有价值的问题,创设生动的问题情境,让问题成为学生“综合与实践”活动的行动主线。在“综合与实践”活动中,教师还要着力营造良好的氛围,催生学生的问题意识,让其学会想问、会问、善问。借助问题,吸引学生积极、主动地参与“综合与实践”活动,从而主动地获取知识,形成问题解决的路径。在这个过程中,自然能提升学生的数学思考能力、探究能力。
比如教学苏教版五年级下册“球的反弹高度”这一部分内容,是在学生已经学习了“求一个数是另一个数的几分之几”的分数应用题的基础上展开的。教学中,教师应当紧紧围绕这一主题,设置学生提出问题并积极参与研究。教师可以做一个“球从高处落地”的数学实验,引导学生进行观察,从而催生学生提出问题,诸如“球为什么会下落?”“球的反弹高度与下落高度有关系吗?”“同一个球,反弹高度是下落高度的几分之几是相同的吗?”“不同的球,反弹高度是下落高度的几分之几是相同的吗?”“球自然下落后,会反弹多少次?”等等。有了这样的问题,学生就会自主设计、研发实验,进行自主性的数学实验研究。比如学生会控制相关变量,积极地参与研究;比如学生可以先用相同的球做实验,再用不同的球做实验。在做实验的过程中,要让球内气压相同,球自然下落的高度相同,等等。如此,学生会主动获取知识,探索问题解决的路径。问题,让学生的综合与实践活动具有了一种方向性、合作性与高效性。在数学“综合与实践”活动中,问题应当贯穿于始终,应当成为学生数学学习的内在脉络。
运用“问题”,能发挥学生数学学习的主观能动性,能让学生自己去独立地获取知识。在“综合与实践”活动中,学生应当是学习的主体,教师应当发挥辅导的作用。辅导,也就是教师将具有逻辑意义的活动内容与学生已有的认识结构等关联起来,从而让学生自探自究、自悟自得,促进师生、生生的教学相长。
■二、以“探究”为手段,引导学生活动探索
对于“综合与实践”活动,教师要精心组织,指导学生的合作、探究。以“探究”为手段,可以引领学生的活动探索。在学生的探究过程中,教师要及时跟进、介入,指导学生切实开展探索活动。比如教师不仅可以通过积极观察、参与等方式对学生综合实践活动进行监督,而且还可以借助微信群、QQ群等,采用视频上传的方式,采用“打卡”的方式,对学生的数学“综合与实践”活动进行监督。通过学生对“综合与实践”活动的自行组织,丰富学生的数学学习感受与体验。
比如教学苏教版五年级下册“蒜叶的生长”这一部分内容,是在学生学习了“折线统计图”的知识基础上展开的。由于这一部分内容的实验时空跨度比较大,因此,笔者在课堂上引导学生商讨了实验方案、实验注意事项之后,让学生在家展开自主性、独立性的研究。通过微信平台对学生的研究进行动态跟踪。学生在实验的过程中,将相关的实验数据、实验动态以图片或者视频的形式上传。学生有的进行水培,有的进行土培;有的将土培的蒜叶放置在室外阳光之下,有的将土培的蒜叶放置在室内,等等。通过对比实验,学生获取了蒜叶、根须等生长的第一手资料。在活动中,笔者发现一些学生每天都查看自己的蒜叶宝贝,他们用直尺小心地测量,用纸笔认真地记录。在绘制折线统计图的过程中,体会到量化研究的精准性、科学性。在此基础上,有学生还自主研究了大豆的生长、红薯藤蔓的生长、风信子叶片的生长等。在这个过程中,学生的动手实践能力切实得到了增强,学生的科学研究品性、学生的科学理性精神逐步得到了有效的培养。
探究是开展小学数学“综合与实践”活动的核心、关键。引导学生的“综合与实践”活动探索,要充分发挥学生的主体性作用,以“引导”为手段,以“发现”为目的。通过学生积极主动的活动,激发学生的数学思维,让学生实践体验。要引导学生互相研讨、相互助推,让学生的探索相互补充、相辅相成、相得益彰,从而展现学生合作性探究学习的样态。
■三、以“创造”为形态,升华学生活动探索
相比较于其他板块的数学学习内容,“综合与实践”活动更有助于学生的创造。以“创造”为形态,可以升华学生的活动探索。作为教师,要精于启思,赋予学生动手、动口、动脑等的机会,打造学生实践活动的平台,助推学生全程参与、全员参与、全面参与。为学生的“綜合实践”活动的创造提供条件。学生的“综合与实践”活动,不是让学生简单地动手,而是要求学生手脑协调,展开一种由多种感官协同参与的具身性、创造性活动。
比如教学苏教版六年级上册“树叶中的比”一课时,笔者首先运用音乐歌曲——《一叶知秋》导入,引导学生探讨语文学科中“一叶知秋”的内涵,并在此基础上引导学生从数学的视角看树叶。教学中,笔者设置了两个数学“综合与实践”活动:其一是引导学生观察、测量、计算数学综合性活动。在一次次的探索、计算之时,学生首先测量了六种不同的树叶之长、宽的比;在形成比值之后,学生萌发了一个猜想:树叶的形状有可能与长、宽有关?树叶的长、宽是否蕴含着固定的比值?其二是学生对猜想进行举例验证,从而形成对树叶的理性认识。学生在经历了一次次的猜想、探索之后,理解和掌握了抽象的数学知识,感悟到了数学的思想方法。这样的创造性活动,触及了学生数学思维的发展以及数学探索能力的提升。
数学“综合与实践”活动,应当从问题出发,以探究作为手段,以创造作为学习形态。通过问题的驱动、探究的引领以及创造的升华,演绎数学“综合”与“实践”活动的精彩。作为教师,应当致力于丰富学生的“综合与实践”活动的体验,通过活动去思维、探究、创造,不断促进学生综合素养的提升!