a2+b2+c2+abc-4
故a2+b2+c2+abc≥4.
再证右不等式
a2+b2+c2+abc≤9.
只要证明
a2+b2+c2+6abc≤9,
这等价于
(a2+b2+c2)(a+b+c)+18abc≤(a+b+c)3,
等价于
a3+b3+c3+(a2b+b2c+c2a)
+(ab2+bc2+ca2)+18abc
≤a3+b3+c3+3(a2b+b2c+c2a)
+3(ab2+bc2+ca2)+6abc,
等价于
(a2b+b2c+c2a)+(ab2+bc2+ca2)≥6abc,
这用6元均值不等式知显然成立,
即有a2+b2+c2+abc≤9.
综上,便有4≤a2+b2+c2+abc≤9.
2477求证:在(a+b)n(n∈N*)的展开式中有2s(n)个系数为奇数.其中s(n)是n在二进制表示中的数字和.
(湖北省谷城县第三中学 贺 斌 龚为民 441700)
证明设n的二进制表示为
n=(al,al-1,…,a1,a0),
即n=al×2l+al-1×2l-1+…+a1×2+a0,
则易知n!中2的次数为
α=(al,al-1,…,a1)+(al,al-1,…,a2)+…+(al)
=al×(2l-1+2l-2+…+1)+al-1
×(2l-2+2l-3+…+1)+…+a1
=al×(2l-1)+al-1×(2l-1-1)
+…+a1×(21-1)
=n-s(n).
n-s(n)-(k-s(k))-(n-k-s(n-k))
=s(k)+s(n-k)-s(n).
2478已知如图1,五边形ABCDE内接于⊙O,且BC=DE,∠EAB=120°. 求证:
AC·AD≤(AB+AE)2.
(北京市芳草地国际学校富力分校 郭文征 郭璋 100121)
图1
图2
证明如图2,连接CE,连接BE交AD于点G.
因为BC=DE,
所以∠EAC=∠BAG.
因为E、A、B、C四点共圆,
所以∠ECA=∠ABE,
所以△ACE∽△ABG,
⟹AB·AE=AC·AG
=AC·(AD-DG)
=AC·AD-AC·DG.
⟹AC·AD
=AB·AE+AC·DG.
①
因为A、C、D、E四点共圆,
所以∠EDA=∠ECA.
所以∠DEB=∠EAC.
从而△DEG∽△CAE.
⟹AC·DG=DE·CE
⟹AC·DG=BC·CE.
②
由①、②两式可得
AC·AD=AB·AE+BC·CE.
③
在△ECB中,由余弦定理得
BE2=BC2+CE2-2BC·CE·cos ∠ECB
⟹BE2=BC2+CE2-2BC·CE·cos 60°
⟹BE2=BC2+CE2-BC·CE
⟹BE2≥2BC·CE-BC·CE
⟹BE2≥BC·CE.
④
在△EAB中,由余弦理得
BE2=AB2+AE2-2AB·AE·cos ∠EAB
⟹BE2=AB2+AE2-2AB·AE·cos 120°
⟹BE2=AB2+AE2+AB·AE.
⑤
由④、⑤两式得
BC·CE≤AB2+AE2+AB·AE.
⑥
由③、⑥两式得
AC·AD≤AB2+AE2+2AB·AE,
所以AC·AD≤(AB+AE)2.
由∠EAD=∠BAC可知AC、AD为∠EAB的内等角线,当且仅当∠EAB的内等角线AC、AD重合为∠EAB的平分线时,不等式中的等号成立.
(浙江省海盐县元济高级中学 张艳宗 314300;北京航空航天大学图书馆 宋庆 100191)
证明
(浙江省慈溪市慈溪实验中学 华漫天 315300)
证明设E(acosα,bsinα),F(acosβ,bsinβ),
则直线EF解析式为
得直线OP解析式为
同时直线AE解析式为
同理可得
显然,欲证OG=OH,只须证xH=-xG
⟺sin2α-sinαsinβ-sinαcosβsin(α-β)
=sinβcosαsin(α-β)-sinβsinα+sin2β
⟺sin2α-sin2β=sinβcosαsin(α-β)+sinαcosβsin(α-β)
显然成立,得证.
2019年5月号问题(来稿请注明出处——编者)
2481设a,b,c>0,证明
(安徽省六安第二中学 陶兴红 237005)
(安徽省枞阳县宏实中学 江保兵 246700)
2483在△ABC中,求证:
(四川成都金牛西林巷18号晨曦数学工作室 宿晓阳 610031)
(河南省方城县教研室 邵明宪 473200)
2485在△ABC中,设a,b,c,ha,hb,hc,R分别为三边长、三个高线长及外接圆半径,指数p为正数,求证