王传娟,张彦群,王建东,许 迪,龚时宏,吴忠东
东北典型区覆膜滴灌春玉米节水增产的光合生理响应
王传娟1,2,张彦群1,王建东2※,许 迪1,龚时宏1,吴忠东3
(1. 中国水利水电科学研究院水利研究所,北京 100048;2. 中国农业科学院农业环境与可持续发展研究所,北京 100081;3. 山东理工大学资源与环境工程学院,淄博 255049)
研究覆膜滴灌条件下春玉米光合生理响应特征,有助于从光合生理角度揭示覆膜滴灌提高作物产量及水分利用效率的内因。研究设置包括覆膜滴灌(MD)、不覆膜滴灌(ND)和传统对照(CK),基于2017—2018年东北典型区春玉米不同生育期叶片的光合-光响应测定,定量比较了处理间产量、水分利用效率及不同生育期的生理学参数指标的差异。研究结果表明,2017—2018年MD比CK处理分别显著提高产量和水分利用效率的范围为20.9%~22.4%和13.6%~21.6%;MD比CK处理平均提高光合能力达12.9%~22.8%,同时提高了表观光量子效率、气孔导度和比叶重,降低了13C同位素分辨率。此外,覆膜滴灌显著影响了叶片氮含量与光合能力、气孔导度与光合能力之间的相关关系,显著提高了叶片的光合氮利用效率。基于以上分析,覆膜滴灌处理下的光合参数的提高或降低是春玉米产量及水分利用效率提高的关键原因。
灌溉;光合;生理;产量;水分利用效率;叶片氮含量
玉米()是世界上产量最高、适应性强的粮食作物[1],其营养价值高、增产潜力大,且种植面积和产量仅次于水稻和小麦。中国年产玉米量占世界第二位,而东北地区是重要的粮食产区,该区玉米种植面积占中国的30%,是保障国家粮食安全的重要战略区域[2]。覆膜滴灌由于能够提高作物产量与水分利用效率成为近年来持续研究的热点和重点[3]-[4]。众多实践表明,覆膜农艺措施结合滴灌节水技术,能为作物提供一个良好的生长环境,可以增加作物产量同时提高水分利用效率。
作物的产量基本上取决于光合系统的大小和性能[5],张彦群等[6]在华北地区的研究表明,光合参数与作物产量具有一定的线性相关关系。光合性能衡量指标有光合速率、蒸腾速率、气孔导度和胞间CO2浓度等[7]。作物光合性能受多种因素的影响,光合速率的提高主要与气孔的调节有关,同时,气孔的调节又与地膜覆盖所提供的土壤温度和水分的增加有关。覆膜滴灌措施有效保持土壤水分和温度[8],改变冠层辐射能量分配[9],影响土壤蒸发和植株蒸腾量之间的分配,降低蒸腾量[10],而这些参数的变化会影响作物光合的过程,从而影响作物光合参数的变化,进而影响作物的产量和水分利用效率。Zhang等[11]在中国干旱区的试验研究表明,覆膜改善了土壤水分与温度,同时提高了作物蒸腾速率和气孔导度,其中起垄半覆盖模式显著增加了两季平均光合速率为12.4%。Hou等[12]研究发现,覆膜条件处理的土豆叶片叶绿素含量、光合速率、核酮糖1、5-二磷酸羧化酶活性和叶面积指数等分别高于对照组。
尽管覆膜滴灌措施节水增产效果明显且得到大力推广[13],但目前国内外研究主要集中于覆膜滴灌措施对土壤水分、温度及玉米生长发育的影响[14]-[17],此外,现有覆膜滴灌下作物生理生态响应机制的研究较多集中在干旱以及半干旱地区[18]。东北地区属于光热资源充足的半湿润区,该区的春季低温的特点明显,深入揭示该区覆膜滴灌措施下春玉米的光合参数指标和生物学指标的定量变化,对于进一步推广覆膜滴灌,深刻阐述国家节水增粮行动的深刻内涵十分重要。研究基于东北地区田间定位试验观测,定量分析了覆膜滴灌(MD)、不覆膜滴灌(ND)和对照组(CK)之间的作物光合参数及生物学指标的变化差异及其内在原因,相关研究结论以期能为揭示覆膜滴灌下作物节水增产的光合生理响应机理提供科学依据。
试验在黑龙江水利科技试验研究中心(125°45′E,45°22′N)进行。试验地气候属中温带大陆性季风气候,多年平均降雨量为400~650 mm,其中80%集中在5月至9月。试验地0~80 cm土层深度的土壤质地为粉壤土,0~80 cm剖面的田间持水率和土壤容重分别为0.35 cm3/cm3和1.29 g/cm3。田间试验于2017年5月至2018年10月进行,以春玉米为研究对象,研究选用的玉米品种为东福1号。
试验采用大垄双行栽培模式,每垄种植2行玉米,相邻两垄间距130 cm,垄宽100 cm,垄高15 cm,沟底宽30 cm。研究设置覆膜滴灌(MD)、不覆膜滴灌(ND)及传统对照(CK)处理,每个处理设置3个重复,各小区四周各设置1 m的保护行。播种前施入基肥(氮(N)量:62 kg/hm2;P2O5:150 kg/hm2;K2O:80 kg/hm2),播种后各处理均追施总氮量230 kg/hm2,MD和ND处理小区采用文丘里施肥器追肥,分别在拔节期和抽穗期按照6∶4比例随水追肥,CK处理在拔节期通过人工撒施追肥,CK处理无灌溉处理,通过自然降雨补充水分。
试验期间,MD和ND处理实施充分灌水,灌水方式为地表滴灌,铺设方式为一管两行,0.1 MPa的工作压力下滴头流量为1.38 L/h,滴头间距为30 cm,管外径为16 cm。灌水下限统一设置为75%田持,灌水上限为田持,在灌水时间上设计相同,即以计划湿润层土壤含水率先到达75%田持的处理为同时安排其他处理开始灌水的时间点,但各处理每次灌水定额以实际土壤含水率值为计算下限。苗期为30 cm,拔节后为50 cm,湿润比P为0.6,灌溉水利用系数为0.95,灌水量根据式(1)计算确定
式中为灌水量,m3;为试验小区面积,m2;为土壤湿润层深度,m;前为灌水前土壤含水率,cm3/cm3;后为灌水后土壤含水率,cm3/cm3;P为湿润比;为灌溉水利用系数。
在玉米苗期、拔节期、抽穗-灌浆期和成熟期,选择典型晴天采用Li-6400便携式光合仪进行叶片光合-光响应曲线测定,测定在上午9时开始,每个处理选择生长一致的3 株玉米,苗期和拔节期测定植株最上面完全展开叶,抽穗-灌浆期和成熟期测定穗位叶上第3个叶片。测定时,叶室温度设定为26 ℃,叶室CO2浓度设定为400mol/mol,光强设定为2 100、1 800、1 500、1 250、1 000、800、500、200、150、110、80、50、20和0mol/(m2·s),从强到弱进行测定。
光合-光响应曲线测定结果用非直角双曲线方程拟合获得相关参数,进行处理间比较分析。当较小时,即0 <<150mol/(m2·s)时,光合速率随着光强增大而增大,采用线性拟合得到表观光量子效率和呼吸速率等参数,确定上述参数后,进行非直角双曲线拟合,得到最大光合速率。非直角双曲线模型[19]的表达式为
式中A为植物的净光合速率,mol/(m2·s);为表观光量子效率(无量纲);为光合有效辐射,mol/(m2·s);max为最大光合速率(photosynthetic capacity),又称光合能力,mol /(m2·s);为曲线的曲率(无量纲),曲率越大,曲线的弯曲程度越大;R为暗呼吸速率,mol/(m2·s)。
叶片光合测定完毕后将叶片取样,测定叶子的长和宽,并乘以转换系数0.75得到实际叶面积,105 ℃杀青,80 ℃下烘干至恒量,称取干质量,干质量与叶面积之比为比叶重(specific leaf weight,SLW,kg/m2)。
将测定完SLW的叶片去掉叶脉,烘干,球磨仪磨碎,送检。检测机构为中国农业大学稳定同位素比率质谱实验室,采用稳定同位素比率质谱仪(DELTA V Advantage isotope ratio mass spectrometer,Thermo Fisher Inc,USA)进行稳定同位素13C和N百分含量的测定。13C分辨率(Δ)根据稳定同位素比率质谱仪测定结果计算。首先检测样品的13C与12C比率,再与国际标准物(Pee Dee Belnite 或PDB)比对后计算出样品的13sample值,已知空气该值为δ13Cair=−8‰,通过式(3)计算样品的13C分辨率[20]
收获时,每个小区选取1处样方进行考种,每个样方面积为3 m×2.6 m,分别测量果穗数、鲜质量、穗长以及穗粒数,风干后脱粒,测定百粒质量和每株玉米的籽粒重,并折算到小区的产量(Yield,Y,t/hm2),水分利用效率(water-use efficiency,WUE,kg/m3)为产量(Y,t/hm2)与作物总耗水(evapotranspiration,ET,mm)之比。其中,玉米生育期内的总耗水量采用水量平衡方法计算,如公式(4)
式中为生育期蒸发蒸腾总量,mm;P为有效降水量,mm;为灌水量,mm;为地表径流损失,mm。本研究地区地势平坦,且滴灌未形成地表积水,因此可忽略;是播种前和收获后0~100 cm深度土壤平均含水率的变化量,mm;是渗漏损失,mm,受土壤质地及灌水定额影响:(1)当100 cm土壤蓄水量小于或等于田间持水量(WFC)时,D= 0;(2)当100 cm土壤贮水量大于WFC时,D=W-WFC;(3)研究区100 cm平均田间持水量为0.35 cm3/cm3,W为第天土壤蓄积量,mm[21]-[22]。
光合-光响应曲线的拟合均采用SPSS 18.0软件的自定义非线性拟合进行,参数确定后采用SPSS 18.0软件的单因素方差分析及Duncan多重比较来确定各处理光合特征等参数的均值差异。在分析光合参数与叶片氮含量关系时,首先采用SPSS 18.0软件的协方差分析确定不同处理之间回归直线斜率和截距是否存在显著差异,若差异显著,则采用Excel软件将覆膜与不覆膜处理数据分别进行线性回归分析,若差异不显著,则将所有处理统一回归分析,确定回归方程和统计参数。
2.1.1 最大光合速率差异
图1给出了2017年和2018年各生育期的光合-光响应参数光合能力(photosynthetic capacity,max)的差异比较结果。2017年和2018年max随生育期的推进先增加后逐渐减小,在拔节期达最高值。整体来看,各处理的max在13.4~63.6mol/(m2·s)之间波动。2017年4次测量有3次显著性差异,苗期、拔节期和抽穗-灌浆期的测定中,MD比CK分别显著高出32.0%、19.2%和29.7%;2018年的4次测量中有2次显著性差异,其中拔节期和成熟期MD比CK分别显著高出19.7%和21.5%。从全生育期平均值来看,2017年和2018年MD处理比ND的分别提高1.3%和4.1%,比CK处理分别提高22.8%和12.9%。由此可见,覆膜滴灌能够提高作物的max值。
注:不同小写字母表示0.05水平上差异显著,MD、ND和CK分别代表覆膜滴灌处理、不覆膜滴灌处理和对照处理,下同。
Notes: Different lowercase letters indicate statistically significant differences at<0.05; MD, ND and CK represent mulched drip irrigation, non-mulched drip irrigation and traditional treatment respectively, the same below.
图1 2017和2018年不同处理间光合能力max的处理间差异
Fig.1 Photosynthetic capacitymaxunder different treatment in year of 2017 and 2018
2.1.2 表观光量子效率差异
图2给出了2017年和2018年各生育期的光合-光响应参数表观光量子效率(apparent quantum yield,α)的差异比较结果。整体来看,2017年和2018年各处理的α在0.026 3~0.067 2之间波动,两年MD处理α平均值比CK分别提高了15.3%和7.5%。2017年4次测量中有2次显著性差异,苗期和拔节期的MD处理下的α值分别比CK显著高出26.1%和24.6%,MD和ND无显著性差异。2018年在苗期有1次显著性差异,MD处理下的α值比CK显著高出12.5%。由此来看,覆膜滴灌能够提高春玉米生育前期的α值。
图2 2017和2018年不同处理间表观光量子α的处理间差异
2.1.3 气孔导度差异
图3为2017年和2018年不同处理间的气孔导度值(stomatal conductance,g)。整体看g的值随生育期推进呈现先增加后减小趋势,在拔节期达到最高值。2017年和2018年气孔导度的变化范围分别为0.12~0.50 mol/(m2·s)和0.07~0.47 mol/(m2·s)。2017年有3次显著性差异,在苗期、拔节期和成熟期间MD处理比CK 分别显著高49.1%、24.8%和57.1%;2018年有2次显著性差异,其中苗期MD比ND和CK分别显著高出34.9%和28.1%,成熟期MD比CK显著高出36.6%。比较2017年和2018年全生育期气孔导度的平均值,MD比CK分别提高27.2%和15.7%。由此可见,覆膜滴灌提高了叶片气孔导度值。
图3 2017和2018年各生育期气孔导度(gs)的处理间差异
2.1.4 比叶重差异
2017年和2018年各生育期处理间比叶干重差异比较如图4。整体来看,比叶重(specific leaf weight,SLW)随生育期推进呈现先增加后减小的趋势,在抽穗-灌浆期达到最大值。2017年和2018年SLW的波动值范围分别为0.040~0.087 kg/m2和0.062~0.084 kg/m2。2017年的有2次显著性差异,苗期和抽穗-灌浆期的MD比CK处理分别显著高出15.5%和10.4%,比ND分别高出9.4%和5.1%。2018年有3次显著性差异,苗期、拔节期和抽穗-灌浆期的MD比CK分别显著高12.9%、17.0%和10.0%, MD比ND分别高5.7%、11.9%和5.8%。比较2017年和2018年全生育期SLW的平均值,MD比CK分别提高5.0%和14.0%。综上,覆膜滴灌提高了玉米生育期的SLW,即覆膜滴灌提高单位面积的叶片质量,而这有利于max的提升,进而有助于光合效率的提升。
2.1.513C同位素分辨率(Δ)差异
2017年和2018年各生育期处理间13C同位素分辨率(Δ)差异比较如图5。Δ随着生育期的推进逐渐升高,覆膜能够降低生育期的Δ值。2017年抽穗-拔节期Δ处理间差异显著,MD比CK低13.6%,ND比CK低5.0%。2018年苗期和拔节期Δ值处理间有差异显著,MD比ND分别显著低8.6%和11.0%,比CK分别显著低7.1%和15.5%,抽穗-灌浆期的MD比ND减小1.1%,但成熟期与2017年相似,MD处理的Δ值显著大于ND和CK处理,全生育期MD平均比ND降低6.1%。
图4 2017和2018年各生育期比叶重(SLW)的处理间差异
图5 2017和2018年各生育期13C同位素分辨率(Δ)的处理间差异
覆膜滴灌能够显著提高玉米的产量及产量构成要素和水分利用效率(water-use efficiency,WUE)(表1)。与CK相比,2017年MD和ND的产量分别提高了20.9%和17.6%;MD的处理下的WUE比ND和CK分别显著提高13.6%和10.9%;MD比ND处理的作物腾发量(evapotranspiration,ET)减小9.7%。2018年MD和ND的产量分别比CK提高22.4%和15.3%;MD处理的WUE比ND和CK分别显著提高21.6%和30.4%;MD比ND处理的ET减小12.6%。另外,对比2017—2018年各处理的产量构成要素,百粒质量的MD比CK处理增加了12.8%~22.7%;穗粒数MD比CK处理增加了3.8%~4.4%。
表1 2017年和2018年东北地区玉米不同处理间产量(Y)、作物腾发量(ET)和水分利用效率(WUE)等的变化
注:表中数据为平均值±标准差,不同字母表示处理间差异显著(<0.05)。
Note: Data in the table are mean value ± standard deviation, different lowercase letters in a column mean significant difference at the 5% level.
2.3.1 光合参数与叶片N含量关系
2017年和2018年的max与叶片N含量(leaf nitrogen content,mass)显著线性相关(图6a),覆膜与滴灌措施一定程度上影响了二者的相关关系。2017年MD、ND与CK处理斜率无显著性差异,各处理截距有显著性差异(<0.001),MD、ND和CK的回归直线决定系数(2)分别为0.47、0.47和0.47。叶片N含量相同时,MD和ND处理的max值高于CK处理。
2.3.2 光合参数与气孔导度的关系
2017—2018年的max与g呈显著线性相关(图6b),覆膜与滴灌处理影响了二者的相关关系。2017年MD、ND与CK处理斜率无显著性差异,截距有显著性差异(=0.007),MD、ND和CK的回归直线决定系数(2)分别为0.55、0.67和0.58,拟合效果较好。覆膜与滴灌使得回归直线斜率的减小,同样的气孔导度条件下,覆膜滴灌措施的叶片max值较大。
a. Amax与Nmass的关系图 a. Relationship between Nmass and Amaxb. Amax与gs的关系图 b. Relationship betweengsand Amax
作物生产实质是干物质量的累积,光合作用是干物质量形成和累积的重要来源,玉米作为C4作物本身光合效率较高,其产量的提升一直备受关注。本研究中覆膜滴灌措施能够保障玉米对东北地区光热等资源的捕获利用,促进了叶片光合作用,进而提高了作物产量和水分利用效率。一些研究结果表明,覆膜滴灌能够提高作物的光合参数[23]。李维敏等[24]研究表明,覆膜滴灌促进玉米的光合作用,主要是增大了玉米叶片的净光合速率,植株蒸腾和气孔导度等参数。段萌等[25]研究认为覆膜能够缓解由水分亏缺引起的春小麦的光合速率的下降,还可以提高气孔导度、最大净光合速率和暗呼吸速率等光合指标。本研究中同样验证了该结论,2017年和2018年MD处理下光合能力比CK处理平均提高22.8%和12.9%(图1),表观光量子效率比CK处理平均提高15.3%和7.5%(图2),相应年份的作物产量分别显著提高了20.9%和17.6%(表1),同时覆膜降低了滴灌条件下的作物耗水为9.7%和12.6%,达到了节水的效果。
比叶重,即单位叶面积的干物质量,是影响作物光合作用的重要参数之一。当SLW增大时叶片一般会增厚[26],较高的单位面积叶片N含量意味着较厚的叶片或者较高的叶肉密度,光合能力一般与SLW正相关[27]。因此,SLW与叶片N含量可以互为替代因子,用于解释光合能力的差异。本文的研究中覆膜滴灌措施提高了各生育期的SLW,此结果从另一方面印证了覆膜滴灌能使叶片性状向提高光合能力的方向发展。
气孔是光合作用气体交换的通道,而气孔导度表征叶片气孔张开的程度,气孔导度增加,胞间CO2浓度提高导致光合速率提高[28],探寻气孔导度对覆膜滴灌的响应对于阐述作物的光合作用具有重要意义。本研究结果表明,2017年和2018年的MD处理的g比CK分别提高27.2%和15.7%,覆膜滴灌处理能够有效的提高叶片气孔导度,减少了气孔因素对光合作用的限制,使得作物能够有效的利用光热和水肥等资源,促进和保障了玉米的高产。
13C同位素分辨率Δ可以直接反映羧化反应酶的效率以及CO2在叶片内部的扩散情况[29],反应作物光合速率受环境因素影响的程度,是指示植物长期累积光合能力的因子,且一定程度上表征植物长期的水分利用效率[20],[30]。一些研究表明Δ是探究作物增产与耗水机理的关键参数,然而,C4作物中Δ较为复杂,其值与产量的关系并不明确,需要进一步研究[31]-[32]。本研究覆膜能够降低Δ值,主要在抽穗灌浆期MD处理能够显著降低Δ值,对应年份的水分利用效率及作物产量相应的提高,这与Cui等[33]研究结果相一致,即叶片Δ与水分利用效率和产量均呈负相关关系。
根据光合参数与叶片N含量的关系图(图6a),叶片N含量增加,max随着提高[34],在本研究范围内呈线性关系,另外发现,相同的叶片N含量下MD和ND处理的max显著提高,即覆膜滴灌处理的叶片的光合N利用效率得到提高。由于本研究中各处理的施肥量相同,覆膜滴灌能够提高叶片的光合N的利用效率,一方面原因可能是覆膜下土壤水分温度较适合根区对土壤氮的吸收转运;另一个可能原因是,较适宜的光照资源促进了叶片的生长,促进了氮等养分向叶片的转移,这与覆膜滴灌处理下的SLW较大的结果一致[27],[35]。
不同处理间光合参数的差异可以用叶片N含量和气孔导度来解释,不同处理间的max分别与mass和g呈显著线性正相关关系,而且线性拟合关系受覆膜与滴灌措施的影响,覆盖滴灌下max对叶片mass和g的敏感性增加。叶片N含量相同时,MD和ND处理的max显著提高,即覆膜与滴灌措施使得叶片的光合N利用效率显著提高,同样的,相同的气孔导度值对应的叶片光合能力也得到显著提高。叶片中的氮大部分与参与卡尔文循环的蛋白、类囊体蛋白等密切相关[36],同时对穗的发育和产量有重要作用。覆膜滴灌措施使得叶片N更多的参与与光合有关的蛋白合成或更多的分配到光合器官中[36],同时促进了气孔导度的提升,因此覆膜滴灌能够提高作物光合作用。
研究基于连续2a田间试验,分析了覆膜滴灌处理(MD)、不覆膜滴灌处理(ND)和传统对照处理(CK)下作物产量、水分利用效率WUE以及作物关键光合参数指标的差异,取得的主要结论如下:
1)MD处理显著提高春玉米光合能力max12.9%~22.8%,提高气孔导度为15.7%~27.2%,提高比叶重为5.0%~14.0%,同时降低了生育期前期的13C同位素分辨率(Δ)值。
2)MD处理提高了春玉米产量和水分利用效率,降低了作物耗水量,这与MD处理提高叶片的光合N利用效率,降低Δ值,从而提高光合参数max有关。
3)春玉米max分别与叶片氮含量和气孔导度的线性关系结果表明,覆膜滴灌显著提高了叶片的光合N利用效率和光合作用关键参数值。
[1]王罕博,龚道枝,梅旭荣,等. 覆膜和露地旱作春玉米生长与蒸散动态比较[J]. 农业工程学报,2012,28(22):88-94. Wang Hanbo, Gong Daozhi, Mei Xurong, et al. Dynamics comparison of rain-fed spring maize growth and evapotranspiration in plastic mulching and un-mulching fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 88-94. (in Chinese with English abstract)
[2]Liu Zhijuan. Maize potential yields and yield gaps in the changing climate of Northeast China[J]. Global Change Biology, 2012, 18(11): 3441-3454.
[3]Bi Yinli, Qiu Lang, Zhakypbek Yryszhan, et al. Combination of plastic film mulching and AMF inoculation promotes maize growth, yield and water use efficiency in the semiarid region of Northwest China[J]. Agricultural Water Management, 2018, 201, 278-286.
[4]Yu Yueyuan, Turner Neil C, Gong Yanhong, et al. Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients[J]. European Journal of Agronomy, 2018, 99, 138-147.
[5]Kossuth S V.Book reviews: Biochemical basis of plant breeding. Volume I: Carbon metabolism[J]. Forest Science, 1986, 1(4): 1096-1097.
[6]张彦群,王建东,龚时宏,等. 秸秆覆盖和滴灌制度对冬小麦光合特性和产量的影响[J]. 农业工程学报,2017,33(12):162-169. Zhang Yanqun, Wang Jiandong, Gong Shihong, et al. Effects of straw mulching and drip irrigation scheduling on photosynthetic characteristic and yield of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 162-169. (in Chinese with English abstract)
[7]高玉红,牛俊义,徐锐,等. 不同覆膜方式对玉米叶片光合、蒸腾及水分利用效率的影响[J]. 草业学报,2012,21(5):178-184. Gao Yuhong, Niu Junyi, Xu Rui, et al. Effects of different film mulching on photosynthesis, transpiration rate and leaf water use efficiency of maize[J]. Acta Prataculturae Sinica, 2012, 21(5): 178-184. (in Chinese with English abstract)
[8]Dong Qin’ge, Yang Yuchen, Yu Kun, et al. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China[J]. Agricultural Water Management, 2018, 201, 133-143.
[9]张彦群,王建东,龚时宏,等. 基于液流计估测蒸腾分析覆膜滴灌玉米节水增产机理[J]. 农业工程学报,2018,34(21):89-97. Zhang Yanqun, Wang Jiandong, Gong Shihong, et al. Analysis of water saving and yield increasing mechanism in maize field with drip irrigation under film mulching based on transpiration estimated by sap flow meter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 89-97. (in Chinese with English abstract)
[10]Zhang Yanqun, Wang Jiandong, Gong Shihong, et al.Effects of film mulching on evapotranspiration, yield and water use efficiency of a maize field with drip irrigation in Northeastern China[J]. Agricultural Water Management, 2018, 205: 90-99.
[11]Zhang Xudong, Yang Linchuan, Xue Xuanke, et al. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region[J]. Field Crops Research, 2019, 233, 101-113.
[12]Hou Fuyun, Zhang Liming, Xie Beitao, et al. Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato () in Northern China[J]. Acta Physiologiae Plantarum, 2015, 37(8):164.
[13]王建东,龚时宏,许迪,等. 东北节水增粮玉米膜下滴灌研究需重点关注的几个方面[J]. 灌溉排水学报,2015,34(1):1-4. Wang Jiandong, Gong Shihong, Xu Di, et al. Several aspects of the research for corn under film drip irrigation in Northeast China[J]. Journal of Irrigation and Drainage, 2015, 34(1):1-4. (in Chinese with English abstract)
[14]Bu Lingduo, Liu Jianliang, Zhu Lin, et al. The effects of mulching on maize growth, yield and water use in a semi-arid region[J]. Agricultural Water Management, 2013, 123: 71-78.
[15]Liu Yi, Li Shiqing, Chen Fang, et al. Soil water dynamics and water use efficiency in spring maize () fields subjected to different water management practices on the Loess Plateau[J]. Agricultural Water Management, 2010, 97(5): 769-775.
[16]Yang Qidong, Zuo Hongchao, Xia Xiao, et al. Modelling the effects of plastic mulch on water, heat and CO2fluxes over cropland in an arid region[J]. Journal of Hydrology, 2012, 452/453(7): 102-118.
[17]申丽霞,王璞,张丽丽. 可降解地膜对土壤温度、水分及玉米生长发育的影响[J]. 农业工程学报,2011,27(6):25-30. Shen Lixia, Wang Pu, Zhang Lili. Effects of degradable film on soil temperature, moisture and growth of maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 25-30. (in Chinese with English abstract)
[18]Deng Xipeng, Shan Lun , Zhang Heping , et al. Improving agricultural water use efficiency in arid and semiarid areas of China[J]. Agricultural Water Management, 2006, 80(1/2/3): 23-40.
[19]Thornley J H M. Mathematical models in plant physiology[J]. Mathematical Models in Plant Physiology, 1976: 307-313.
[20]Farquhar Graham D, O’Leary M H, Berry Joseph A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 1982, 9(2): 121-137.
[21]龚元石,李保国. 应用农田水量平衡模型估算土壤水渗漏量[J]. 水科学进展,1995,6(1):16-21. Gong Yuanshi, Li Baoguo. Using field water balance model to estimate the percolation of soil water[J]. Advances in Water Science, 1995, 6(1): 16-21. (in Chinese with English abstract)
[22]Wang Chuanjuan, Wang Jiandong, Xu Di, et al. Water consumption patterns and crop coefficient models for drip-irrigated maize () with plastic mulching in Northeastern China[J]. Transactions of the ASABE, 2019, 62(3): 571-584.
[23]胡敏杰,姜良超,李守中,等. 覆膜与滴灌对河套灌区玉米花粒期叶片光合特征的影响[J]. 应用生态学报,2017,28(12):3955-3964. Hu Minjie, Jiang Liangchao, Li Shouzhong, et al. Effects of different mulching and drip irrigation patterns on photosynthetic characteristics of maize leaves in the Hetao irrigation district, Inner Mongolia, China[J]. Chinese Journal of Applied Ecology, 2017, 28(12): 3955-3964. (in Chinese with English abstract)
[24]李维敏,周国兴,李旭新,等. 不同覆膜方式对玉米光合特性及产量的影响[J]. 内蒙古民族大学学报(自然科学版),2017,32(1):50-57. Li Weimin, Zhou Guoxing, Li Xuxin, et al. Effects of mulching methods on photosynthetic characteristics and yield of maize[J]. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2017, 32(1): 50-57. (in Chinese with English abstract)
[25]段萌,杨伟才,毛晓敏. 覆膜和水分亏缺对春小麦光合特性影响及模型比较[J]. 农业机械学报,2018,49(1):219-227. Duan Meng, Yang Weicai, Mao Xiaomin. Effects of water deficit on photosynthetic characteristics of spring wheat under plastic mulching and comparison of light response curve models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 219-227. (in Chinese with English abstract)
[26]Poorter L, Bongers F. Leaf traits are good predictors of plant performance across 53 rain forest species[J]. Ecology, 2006, 87(7): 1733-1743.
[27]张彦群,王建东,龚时宏,等. 滴灌条件下冬小麦施氮增产的光合生理响应[J]. 农业工程学报,2015,31(6):170-177. Zhang Yanqun, Wang Jiandong, Gong Shihong, et al. Photosynthetic response of yield enhancement by nitrogen fertilization in winter wheat fields with drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 170-177. (in Chinese with English abstract)
[28]许大全. 光合作用气孔限制分析中的一些问题[J]. 植物生理学通讯,1997,33(4):241-244. Xu Daquan. Some problems in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communications, 1997, 33(4): 241-244. (in Chinese with English abstract)
[29]Dawson T E, Mambelli S, Plamboeck A H, et al. Stable isotopes in plant ecology[J]. Annual Review of Ecology & Systematics, 2002, 33(1): 507-559.
[30]Wang Zhenchang, Kang Shaozhong, Jensen Christian R, et al. Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2and enhances photosynthetic capacity in maize leaves[J]. Journal of Experimental Botany, 2012, 63(3): 1145-1153.
[31]Monneveux P, Sheshshayee M Sreeman, Akhter Javed, et al. Using carbon isotope discrimination to select maize () inbred lines and hybrids for drought tolerance[J]. Plant Science, 2007, 173(4): 390-396.
[32]Kirda C, Mohamed A R A G, Kumarasinghe Kaushalya, et al. Carbon isotope discrimination at vegetative stage as an indicator of yield and water use efficiency of spring wheat ()[J]. Plant and Soil, 1992, 147(2): 217-223.
[33]Cui Ningbo, Du Taisheng, Kang Shaozhong, et al. Relationship between stable carbon isotope discrimination and water use efficiency under regulated deficit irrigation of pear-jujube tree[J]. Agricultural Water Management, 2009, 96(11): 1615-1622.
[34]Bindraban P S. Impact of canopy nitrogen profile in wheat on growth[J]. Field Crops Research, 1999, 63(1): 63-77.
[35]Li Dandan, Tian Mengyu, Cai Jian, et al. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings[J]. Plant Growth Regulation, 2013, 70(3): 257-263.
[36]Evans, J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989, 78(1): 9-19.
Photosynthetic response of water-saving and yield-increasing of mulched drip irrigation for spring maize () in northeast China
Wang Chuanjuan1,2, Zhang Yanqun1, Wang Jiandong2※, Xu Di1, Gong Shihong1, Wu Zhongdong3
(1.,,100048,; 2.,,100081,; 3.,,255049,)
It issignificant to reveal the physiological mechanism of water-saving and yield-increasing effects of spring maize ()under mulched drip irrigation. The objective of this study was to explore the photosynthetic characteristics response of spring maize in a field with drip irrigation under film mulching. Field experiments were carried out from May 2017 to October 2018 for two years at the Heilongjiang Hydraulic Science and Technology Experimental Research Center (45°22′ N, 125°45′ E), located in a typical area of Northeast China, and three treatments were applied: film mulched drip irrigation (MD), non-mulched drip irrigation (ND), and traditional rain-fed practice as a control (CK). The effects of mulched drip irrigation on grain yield and water-use efficiency of maize were analyzed. Based on photosynthetic-light response curves of spring maize leaves at different growth stages from 2017 to 2018, the effects of mulched drip irrigation on photosynthetic capacity, apparent quantum yield, stomatal conductance, specific leaf weight, and13C carbon isotope discrimination rate of maize were also analyzed. In 2017, the results showed that the yield of MD, ND and CK treatment was 11.0, 10.7 and 9.1 t/hm2respectively, and water-use efficiency was 2.34, 2.06 and 2.11 kg/m3for MD, ND and CK treatment respectively. In 2018, the results showed that the yield was 12.0, 11.3 and 9.8 t/hm2respectively, and water-use efficiency was 2.70, 2.22 and 2.07 kg/m3for MD, ND and CK treatment respectively. From 2017 to 2018, photosynthetic capacity first increased and then gradually decreased with the advance of the growth period, and the photosynthetic capacityvalues ranged from 13.4 to 63.6mol/(m2·s). The apparent quantum yieldvalue of different treatments fluctuated between 0.026 and 0.067. The value of stomatal conductance increased first and then decreased with the development of the growth period, and reached the highest value at the jointing stage. The range of stomatal conductance was 0.12-0.50 mol/(m2·s) in 2017 and 0.07-0.47 mol/(m2·s) in 2018, respectively. The specific leaf weight values increased first and then decreased with the advancement of growth stage, and reached the maximum value during the tasseling milk stage. The range of specific leaf weight was 0.040-0.087 kg/m2in 2017 and 0.062-0.084 kg/m2in 2018, respectively.13C carbon isotope discrimination rate value increased with the growth period. From 2017 to 2018, the MD treatment significantly increased the yield by 20.9%-22.4% compared with the CK as well as significantly increased the water-use efficiency by 13.6%-21.6% compared with the ND, respectively.The MD treatment increased the average photosynthetic capacity value significantlyby 12.9%-22.8% (< 0.05),also increasedstomatal conductance by 15.7%-27.2%,increased specific leaf weight by 5%-14%, and decreased the13C carbon isotope discrimination rate of maize, especially in the early growth stage,compared to CK. It showed that mulched drip irrigation could improve the photosynthetic parameters of maize. Also, the MD treatment significantly affected the linear correlation between leaf nitrogen content and photosynthetic capacity, stomatal conductanceand photosynthetic capacity,compared with CK, the slopes of the regression line in the MD and ND treatments were higher, which meant that for a given leaf nitrogen content and stomatal conductance, the MD and ND treatments had a higher photosynthetic capacity values than that of the CK. Also, the results showed that photosynthetic N utilization efficiency and stomatal conductance of leaves was significantly improved by film mulching drip irrigation, which might be the physiological reason for the improvement of photosynthetic capacity, and this might be the key reason for that why yield and water-use efficiency in MD treatment could be significantly increased. Based on the above comprehensive analysis, it was found that the increasing or decreasing of these key photosynthetic parameters under mulched drip irrigation was the key reason for the increase of yield and water-use efficiency of spring maize. This study result provided a theoretical basis for the implementation of film-mulching and drip-irrigation technology in cold spring and water-deficient areas.
irrigation; photosynthesis; physiology; yield; water-use efficiency; leaf nitrogen content
王传娟,张彦群,王建东,许 迪,龚时宏,吴忠东. 东北典型区覆膜滴灌春玉米节水增产的光合生理响应[J]. 农业工程学报,2019,35(24):90-97. doi:10.11975/j.issn.1002-6819.2019.24.011 http://www.tcsae.org
Wang Chuanjuan, Zhang Yanqun, Wang Jiandong, Xu Di, Gong Shihong, Wu Zhongdong. Photosynthetic response of water-saving and yield-increasing of mulched drip irrigation for spring maize () in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 90-97. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.011 http://www.tcsae.org
2019-05-10
2019-10-10
国家自然科学基金项目(51879277);中国农业科学院科技创新项目(2018-2020);流域水循环模拟与调控国家重点实验室自主研究课题(SKL2018TS05)
王传娟,博士生,主要从事农业节水与作物光合生理机理研究。Email:shandongwcj@163.com
王建东,博士,研究员,主要从事农业节水原理与技术研究及节水灌溉装备研发。Email:wangjiandong@caas.cn
10.11975/j.issn.1002-6819.2019.24.011
S161.4
A
1002-6819(2019)-24-0090-08