王巧华,梅 璐,马美湖,高 升,李庆旭
利用机器视觉与近红外光谱技术的皮蛋无损检测与分级
王巧华1,2,梅 璐1,马美湖2,3,高 升1,李庆旭1
(1. 华中农业大学工学院/农业部长江中下游农业装备重点实验室,武汉 430070;2. 国家蛋品加工技术研发分中心 华中农业大学,武汉 430070;3. 华中农业大学食品科学技术学院,武汉 430070)
为了对优质蛋、次品蛋和劣质蛋这3种皮蛋进行检测及分级,该文应用机器视觉结合近红外光谱技术,研究利用皮蛋凝胶品质无损检测的分级方法。首先采集皮蛋透射光图像,提取18个图像颜色特征值,然后将所提取的18维特征利用主成分分析(principal component analysis,PCA)进行降维,对PCA降维后的3个主成分建立遗传算法优化支持向量机(genetic algorithm-support vector machine,GA-SVM)分级模型,把皮蛋样本分为两大类:可食用蛋(优质蛋与次品蛋)与不可食用蛋(劣质蛋),劣质蛋测试集识别率为100%。然后在机器视觉分类结果的基础上,利用近红外光谱技术获取可食用蛋(优质蛋与次品蛋)的原始光谱,并进行多元散射矫正(multiplicative scatter correction,MSC),利用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)降维提取特征波长,基于支持向量机(support vector machine,SVM)对特征波长变量建立分级模型,区分出优质蛋与次品蛋,优质蛋测试集识别率为96.49%,次品蛋识别率为94.12%。研究结果表明:基于机器视觉和近红外光谱进行皮蛋凝胶品质无损检测分级是可行的。
机器视觉;近红外光谱;凝胶品质;皮蛋;支持向量机
皮蛋又名松花蛋、彩蛋,是中国特有的一种蛋制品[1-2]。它多以鲜鸭蛋为原料,在碱液中经过蛋白质变性制作而成。其营养价值丰富,每100 g的可食用皮蛋中含有32 mg的氨基酸,是鲜蛋含量的11倍[3-5]。皮蛋还具有开胃、去火和治泻痢等功效,深受广大人民的喜爱,因此皮蛋占据了中国再制蛋的主要部分,位于蛋制品产量第一位,目前已出口20多个国家和地区[6-8]。
皮蛋形成过程一般会从溶胶状态转化为溶液状态(化清),再从溶液状态转化为凝胶状态(凝固),凝固后腌制液持续渗透,蛋白质分子间的空间结构遭到破坏,已经吸附的结合水又会释放出来以自由水状态存在,凝胶再次液化(稀化),俗称碱伤。蛋壳气孔大小,腌制液浓度、腌制温度等均对皮蛋凝胶品质有影响[1,6]。皮蛋凝胶性的强弱是衡量其品质的重要指标[4],工厂对皮蛋分级时,一般分为3级。第1级是凝固完整呈凝胶状态的皮蛋,属于优质蛋。第2级是轻微碱伤蛋,剥开后有黏壳、烂头、蜡黄等现象,但仍能食用,属于次品蛋。第3级是水响蛋,蛋内全部液化成水,属于劣质蛋,不能食用。
虽然鲜蛋已经实现了全自动检测处理,但是目前对于传统蛋制品皮蛋的分级检测依然依靠人工,通过灯照、手敲等方法来判断分级,存在劳动强度大、工作效率低等诸多弊端[9]。近红外光谱和机器视觉技术是2种常用的无损检测方法,具有快速、高效、无损等优点[10-18],广泛应用于农产品品质检测分级中,如核桃[19]、红提[20]、苹果[21-22]、紫薯[23]、鸡蛋[24]等。前人有检测皮蛋表面斑点、裂纹、振动的初步研究:乐立强等[2]利用机器视觉技术研究了皮蛋表面黑斑形成因素与腌制配方的关系,确定了最佳配比;Wang[8]针对皮蛋表面有大量灰褐色斑点和大块黑斑使其表面裂纹不易检测的情况,搭建了偏振光图像采集系统,利用皮蛋表壳不同点偏振度的差异性来识别裂纹。Chen等[9]利用加速度传感器采集皮蛋的振动信号来判断皮蛋的凝胶状况,通过不同的振动分析表明:凝胶完整皮蛋的衰减率低于80%。但是Chen的检测方法具有局限性,对环境要求较高,只能区分出不可食用蛋(劣质蛋)与可食用蛋(优质蛋与次品蛋)。目前市场尚无关于皮蛋凝胶品质无损检测分级的研究报道,因此本文结合图像与光谱技术研究一种皮蛋凝胶品质无损检测分级方法。
试验采用的皮蛋样本是市场上常见的以鸭蛋为原料的青壳皮蛋,由湖北神丹健康食品有限公司提供,其中优质蛋210个,次品蛋191个,劣质蛋200个,一共601个样本,3类样本如图1所示。
利用TMS-PRO型质构仪进行TPA(texture profile analysis)试验,测定皮蛋质构参数,试验步骤为:先在质构仪上装好P100/R探头,然后在凝胶测定程序中设置好试验参数:测试前速度为1mm/s,测试速度为1mm/s,测试后速度为2mm/s,压缩百分比为40%,测试时间间隔为5s。
表1是不同等级皮蛋质构参数的统计结果,从表中可以看出优质蛋的弹性、硬度、凝聚性和咀嚼性平均值都大于次品蛋,次品蛋的胶粘性大于优质蛋,优质蛋的质构参数要优于次品蛋[1](劣质蛋为液体,无法进行质构试验)。
图1 3类皮蛋样本图
表1 两级皮蛋的质构参数
人工照蛋采用沪字牌白炽灯泡(功率为100 W)作为光源来观察皮蛋整体及四周边缘对光的透射情况。本文机器视觉装置仿照人工检测皮蛋的方法搭建而成,设计较大光孔,让更多的光透射皮蛋以便凸显皮蛋边缘,装置示意图如图2所示。机器视觉试验用到的仪器与设备有:丹麦JAI公司的AD-080GE双通道工业相机(镜头接口为C接口,靶面尺寸为0.847 cm,分辨率为1024×768像素,帧率为30帧/s);日本Kowa公司的LM6NC镜头(C接口,靶面尺寸为1.27 cm,定焦镜头,焦距为6 mm);Cob款帕灯(功率为24 W,颜色为暖白)。采集近红外光谱所用仪器为美国赛默飞世尔科技公司的Antaris II傅里叶变换近红外光谱仪。质构试验所用仪器为美国FTC公司的TMS-PRO质构仪。
1.帕灯 2.皮蛋 3.暗箱 4.相机及镜头 5.计算机
1.3.1 皮蛋机器视觉图像采集
采集图像时,将皮蛋放置在透光孔处,打开光源,关上暗箱,调整相机的物距和光圈,当物距为0.2m,光圈值为1.8时,图像最为清晰。固定参数采集皮蛋图像。
图3所示是采集3种凝胶品质皮蛋的代表性图像。优质蛋和次品蛋大头或小头部分透光,而劣质蛋不透光或透光面积大。
图3 皮蛋原始图像
1.3.2 皮蛋近红外光谱采集
选择积分球固体采样模块采集皮蛋漫反射光谱。采集光谱时,将样本竖立放置,分别采集皮蛋大头、小头的光谱,然后取平均值作为原始光谱。设置测量波段范围10000~4000cm-1,扫描次数32,分辨率4cm-1。从图4皮蛋的平均光谱图中可以看到4个明显的吸收峰,分别位于4270、4628、5153、6900cm-1附近。
图4 皮蛋平均光谱
2.1.1 去除图像背景
首先对原始图像进行灰度化处理,然后提取皮蛋轮廓,在比较了canny、sobel、roberts、prewitt、log等边缘检测算子的处理结果后,本文采用canny算子进行边缘检测,然后利用凸包算法进行椭圆拟合,再进行掩膜,得到去除背景的图像。主要处理过程如图5所示。
图5 去除图像背景处理过程
2.1.2 提取图像特征值
通过分析皮蛋图像的特点,发现选择颜色特征值作为图像特征能有效表征不同级别皮蛋之间的差异。RGB、HSV颜色空间是常用的2个颜色空间,而皮蛋在Lab颜色空间测定色度,故选择了RGB、HSV、Lab这3个颜色空间。RGB颜色空间为图像中每个像素的RGB分量分配了从0~255范围内的强度值,可以形成16777216(256×256×256)种颜色[25]。HSV空间是以色调、饱和度和明度所组成的圆锥体坐标系描述图像颜色[26]。Lab空间用数字化的方法来描述人的视觉感应。分量用于表示像素的亮度,从纯黑到纯白,表示从红色到绿色的范围,表示从黄色到蓝色的范围。Lab颜色空间比人类视觉的色域大,常常被用在颜色识别相关的算法中[27-28]。
针对皮蛋透射图像特征,在RGB空间提取红均值()、绿均值()、蓝均值()和对应标准差σ、σ、σ为特征值。把图像转换到HSV空间,提取色调均值()、饱和度均值()、明度均值()和对应标准差σ、σ、σ为特征值。将图像转换到Lab空间,提取亮度均值()、红度均值()、黄度均值()和对应标准差σ、σ、σ为特征值。经过大量预试验对比分析,在3个空间共提取了以上18个颜色特征值。
2.1.3 主成分分析及分类建模
为减少数据的维度,将提取的颜色特征值进行主成分分析,即把数据进行标准化处理后计算其相关系数矩阵、特征矩阵和各主成分载荷矩阵,最终根据各主成分累计贡献率来选择主成分,一般选取累计贡献率大于90%的前几个主成分。主成分分析有利于提高模型的收敛速度和识别率[29-30]。
如表2所示、、、、、、σ、σ、σ、σ、σ、σ等颜色特征载荷大,对第1主成分有较高贡献率。、、、、、σ、σ对第2主成分贡献较高,、σ、σ对第3主成分贡献较高。前3个主成分包含了18个颜色特征信息。
表2 主成分因子载荷矩阵
然后基于机器视觉技术对可食用蛋(优质蛋和次品蛋)与不可食用蛋(劣质蛋)进行鉴别分类,将18个图像颜色特征值进行主成分分析,以测试集识别率为判断依据,提取不同数目的主成分建立判别模型。从图6可以看出,当主成分数为3时测试集识别率最高,且前3个主成分累计贡献率达到97.594%,故选取前3个主成分变量输入到GA-SVM模型当中建立分类模型。
图6 基于机器视觉的不同主成分数训练集与测试集识别率
将得到的主成分输入到GA-SVM模型中进行训练。建立GA-SVM模型时,采用RBF核函数和遗传算法全局寻优。若对3种等级皮蛋进行三分类时,把601个样本随机分为训练集421个,测试集180个,测试集识别率仅为75.00%。从图3可以看出可食用的优质蛋、次品蛋与不可食用的劣质蛋图像差异大,故对只包含优质蛋和劣质蛋的试验样本分类,训练结果如表3所示,把410个样本随机分为训练集287个,测试集123个,测试集识别率为97.56%。把只包含次品蛋和劣质蛋的391个试验样本,随机分为训练集274个,测试集117个,测试集识别率为93.16%,均高于90%。试验结果表明机器视觉技术可以将皮蛋分为可食用蛋(优质蛋和次品蛋)与不可食用蛋(劣质蛋)。
表3 基于机器视觉的皮蛋分级结果
为了消除仪器噪声、环境背景等因素的影响,本研究分别使用多元散射矫正(multiplicative scatter correction,MSC)、标准正交变换(standard normal vafiate,SNV)、自动标尺放大(autoscale)、Savitzky-Golay卷积平滑处理(SG)等方法对原始光谱信息进行预处理。谱区范围为4 000~8 000 cm-1[31]。因全光谱数据量大,存在无关干扰信息,所以对比了竞争性自适应重加权(competitive adaptive reweighted sampling,CARS)、连续投影算法(successive projections algorithm,SPA)和无信息变量消除(uninformative variable elimination,UVE)等常用的算法后,择优选取CARS算法提取特征波长,其中设置蒙特卡洛采样次数为50,交叉验证分组数为5,提取的最大主成分数为10。当采样次数为23时,误差最小。利用SVM模型对CARS算法选取的特征波长变量建立分级模型,以确定最优预处理方法和判别模型。
对3种等级皮蛋进行三分类时(如表4所示),把601个样本随机分为训练集421个,测试集180个,测试集识别率仅为78.33%。从图4可以看出,次品蛋与劣质蛋的平均光谱信息基本重合,所以三分类时识别率较低。而优质蛋的平均光谱在4500~5100cm-1、5400~10000cm-1波段与两者差异明显。又因基于机器视觉技术能将皮蛋分为可食用蛋(优质蛋和次品蛋)与不可食用蛋(劣质蛋),却难以进一步区分优质蛋与次品蛋。故可以利用近红外光谱技术对所有优质蛋与次品蛋进行分级。
把剔除劣质蛋后的401个可食用蛋样本随机分为训练集293个,测试集108个。首先获取其原始光谱,然后进行多元散射矫正。利用CARS算法提取了分布在4 420~5 152 cm-1和5 538~7 042 cm-1波段范围内的75个特征波长,输入到SVM模型当中进行训练,采用RBF核函数和交叉验证法寻找的最优参数为256,最优参数为0.004 5,测试集识别率达到95.37%。说明近红外光谱可以对优质蛋与次品蛋进行分类。
表4 基于近红外光谱的皮蛋分级结果
利用机器视觉技术和近红外光谱技术单独对3种等级的皮蛋分级,测试集识别率都低于80%。为了提高分级识别率,本研究尝试将图像特征信息和光谱特征信息进行特征层信息融合,建立基于机器视觉和近红外光谱融合技术的SVM判别模型,但发现信息融合模型测试集识别率为77.38%,不能满足实际生产需要。
故本文提出分步检测法,先利用机器视觉技术把皮蛋分为可食用蛋(优质蛋和次品蛋)与不可食用蛋(劣质蛋),再基于近红外光谱对可食用蛋进行分类,将优质蛋与次品蛋识别分开。
基于机器视觉技术建立分类模型,把601个皮蛋样本随机分为训练集433个,测试集168个,测试集中优质蛋57个,次品蛋51个,劣质蛋60个。利用机器视觉技术将劣质蛋分出,结果如表5所示,60个不可食用蛋(劣质蛋)和103个可食用蛋(优质蛋和次品蛋)判断正确,劣质蛋识别率为100%。基于近红外光谱技术对可食用蛋(优质蛋和次品蛋)分类,结果如表5所示,55个优质蛋和48个次品蛋判断正确,优质蛋识别率为96.49%,次品蛋识别率为94.12%。测试集总体识别率为96.38%。
表5 机器视觉结合近红外光谱技术的分类结果
对比了不同分级方法对3种等级皮蛋的分级结果(如表6所示),发现只有将机器视觉与近红外光谱技术分步综合起来才能实现皮蛋分级,3种等级皮蛋的识别率均高于90%,其分级准确率高于其他方法。
表6 不同分级方法对3种等级皮蛋分类的结果
本文利用机器视觉和近红外光谱技术对3种凝胶品质的皮蛋检测分级进行了研究,通过试验发现单独使用机器视觉技术和近红外光谱技术或融合2种技术进行分级,识别率均低于80%。但是分步综合2种方法可实现较为理想的结果,先利用机器视觉技术将劣质蛋分出,劣质蛋识别率为100%,然后利用近红外技术将机器视觉无法分开的优质蛋与次品蛋进一步鉴别区分,优质蛋识别率为96.49%,次品蛋识别率为94.12%。总体识别率为96.38%。研究结果表明机器视觉综合近红外光谱能够实现皮蛋凝胶品质无损检测分级,可望解决当前皮蛋品质检测分级难题。
[1] 郭伶,李慧. 温度对加锌工艺皮蛋质量的影响[J]. 中国家禽,2015,37(2):42-44. Guo Ling, Li Hui. Effect of temperature on the quality of zinc-containing alkaline-preserved eggs[J]. China Poultry, 2015, 37(2): 42-44. (in Chinese with English abstract)
[2] 乐立强,吴玲,孙静,等. 基于机器视觉的皮蛋斑点检测和最佳生产配方研究[J]. 食品科学,2012,33(6):203-208. Le Liqiang, Wu Ling, Sun Jing, et al. Detection of spots on surface of preserved egg and optimal preserved formula based on machine vision[J]. Food Science, 2012, 33(6): 203-208. (in Chinese with English abstract)
[3] 马磊,严文静,赵见营,等. 纳米SiO2及TiO2改性复合涂膜提高松花蛋的保鲜效果[J]. 农业工程学报,2015,31(18):269-280. Ma Lei, Yan Wenjing, Zhao Jianying, et al. Preserved effect of nano-SiO2and nano-TiO2[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 269-280. (in Chinese with English abstract)
[4] 尹月玲,刘瑶,章建浩,等. 纳米SiO2复合涂膜材料包装松花蛋的保鲜效果[J]. 农业工程学报,2012,28(25):281-287. Yin Yueling, Liu Yao, Zhang Jianhao, et al. Effect of composite conting with nano-silicon dioxide on fresh-keeping of preserved eggs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(25): 281-287. (in Chinese with English abstract)
[5] 毛昶懿. 皮蛋抗肿瘤功效及其机制的研究[D]. 武汉:华中农业大学,2018. Mao Changyi. Antitumor Effect and Mechanism of Preserved Egg[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract)
[6] 周赞. 不同腌制方法和不同金属盐类对皮蛋质量的影响[D].长沙:湖南农业大学,2012. Zhou Zan. The Effect of Different Pickled Methods and Metal Salts on the Quality of Preserved Eggs[D]. Changsha: Hunan Agricultural University, 2012. (in Chinese with English abstract)
[7] 刘龙. 皮蛋溏心和蛋壳裂纹检测技术研究[D]. 武汉:华中农业大学,2012.Liu Long. Research of Detection Technology on Soft-yolk and Cracked Preserved Egg[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese with English abstract)
[8] Wang Fang, Wen Youxian, Tan Zuojun, et al. Nondestructive detecting cracks of preserved eggshell using polarization technology and cluster analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(9): 249-255. (in English with Chinese abstract)王芳,文友先,谭佐军,等. 基于偏振光和聚类分析的皮蛋壳裂纹无损检测(英文)[J]. 农业工程学报,2014,30(9):249-255.
[9] Chen Yuchuan, Hu Miaolin, Cheng Chingwei. Applying non-destructive techniques to inspect preserved egg products by decay rates[J]. Food Eng, 2011, 104: 30-35.
[10] 李龙,彭彦昆,李永玉. 苹果内外品质在线无损检测分级系统设计与试验[J]. 农业工程学报,2018,34(9):267-275. Li Long, Peng Yankun, Li Yongyu. Design and experiment on grading system for online non-destructive detection of internal and external quality of apple[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 267-275. (in Chinese with English abstract)
[11] 刘燕德,肖怀春,邓清,等. 柑桔黄龙病近红外光谱无损检测[J]. 农业工程学报,2016,32(14):202-208. Liu Yande, Xiao Huaichun, Deng Qing, et al. Nondestructive detection of citrus greening by near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 202-208. (in Chinese with English abstract)
[12] 黄星奕,钱媚,徐富斌. 基于机器视觉和近红外光谱技术的杏干品质无损检测[J]. 农业工程学报,2012,28(7):260-265. Huang Xingyi, Qian Mei, Xu Fubin, et al. Nondestructive detection of dried apricots quality based on machine vision and near-infrared diffuse reflectance spectroscopy technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 260-265. (in Chinese with English abstract)
[13] 彭彦昆,赵芳,李龙,等. 利用近红外光谱与PCA-SVM识别热损伤番茄种子[J]. 农业工程学报,2018,34(5):159-165. Peng Yankun, Zhao Fang, Li Long, et al. Discrimination of heat-damaged tomato seeds based on near infrared spectroscopy and PCA-SVM method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 159-165. (in Chinese with English abstract)
[14] 陶海龙. 基于机器视觉和近红外光谱的马铃薯分级检测方法[D]. 武汉:华中农业大学,2014.Tao Hailong. The Method for Potato Testing and Grading Based on Machine Vision and Near Infrared Spectrum[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract)
[15] 李文采,李家鹏,田寒友,等. 基于RGB颜色空间的冷冻猪肉储藏时间机器视觉判定[J]. 农业工程学报,2019,35(3):294-300. Li Wencai, Li Jiapeng, Tian Hanyou, et al. Determination of storage time for chilled pork by using RGB color space method based on machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 294-300. (in Chinese with English abstract)
[16] 宋彦,谢汉垒,宁井铭,等. 基于机器视觉形状特征参数的祁门红茶等级识别[J]. 农业工程学报,2018,34(23):279-286. Song Yan, Xie Hanlei, Ning Jingming, et al. Grading Keemun black tea based on shape feature parameters of machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 279-286. (in Chinese with English abstract)
[17] 张伟,屠康,刘鹏,等. 基于机器视觉与敲击振动融合的鸭蛋孵化特性检测[J]. 农业机械学报,2012,43(2):140-145. Zhang Wei, Tu Kang, Liu Peng, et al. Early fertility detection of hatching duck egg based on fusion between computer vision and impact excitation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(2): 140-145. (in Chinese with English abstract)
[18] 仇逊超. 机器视觉和近红外光谱对红松籽品质检测方法的研究[D]. 哈尔滨:东北林业大学,2017. Qiu Xunchao. Study on Quality Detection Method of Korean Pine Seed Using Machine Vision and Near Infrared Spectrum[D]. Harbin: Northeast Forestry University, 2017. (in Chinese with English abstract)
[19] 马文强,张漫,李忠新. 基于近红外光谱的核桃仁品种快速分类方法[J]. 农业机械学报,2015,46(S1):128-133. Ma Wenqiang, Zhang Man, Li Zhongxin. Rapid classification method of walnut kernel varieties based on near-infrared diffuse reflectance spectra[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(S1): 128-133. (in Chinese with English abstract)
[20] 高升,王巧华,李庆旭,等. 基于近红外光谱的红提维生素C含量、糖度及总酸含量无损检测方法[J]. 分析化学,2019,47(6):941-949. Gao Sheng, Wang Qiaohua, Li Qingxu, et al. Non-destructive detection of vitamin C, sugar content and total acidity of red globe grape based on near-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6): 941-949. (in Chinese with English abstract)
[21] Roberto Moscetti, Flavio Raponi, Serena Ferri, et al. Real-time monitoring of organic apple (var.) during hot-air drying using near-infrared spectroscopy[J]. Journal of Food Engineering, 2018, 222: 139-150.
[22] 黄辰,费继友. 基于图像特征融合的苹果在线分级方法[J]. 农业工程学报,2017,33(1):285-291. Huang Chen, Fei Jiyou. Online apple grading based on decision fusion of image features[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 285-291. (in Chinese with English abstract)
[23] 田潇瑜,黄星奕,白竣文,等. 基于近红外光谱技术的紫薯贮藏期间花青素含量检测[J]. 农业机械学报,2019,50(2):350-355. Tian Xiaoyu, Huang Xingyi, Bai Junwen, et al. Detection of anthocyanin content of purple sweet potato during storage period based on near infrared spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 350-355. (in Chinese with English abstract)
[24] Siswantoro J, Hilman M Y, Widiasri M. Computer vision system for egg volume prediction using backpropagation neural network[J]. IOP Conference Series: Materials Science and Engineering, 2017, 273(1):012002.
[25] 孙世鹏. 基于机器视觉和近红外高光谱的冬枣检测方法研究[D]. 杨凌:西北农林科技大学,2017. Sun Shipeng. Detection of Winter Jujube Fruits Based on Machine Vision and Near-infrared Hyperspectral Image[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)
[26] Bertels L, Smets B, Wolfs D. Dynamic water surface detection algorithm applied on proba-v multispectral data[J]. Remote Sensing, 2016, 8(12): 1010.
[27] 徐海霞. 基于机器视觉和电子鼻技术的菠菜新鲜度无损检测研究[D]. 镇江:江苏大学,2016. Xu Haixia. Study on Nondestructive Detection of Freshness of Post-harvest Spinach Based on Machine Vision and Electronic Nose[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)
[28] 林颢,宋奔腾,金鸿娟,等. 基于嗅觉可视化与图像处理的食醋醋龄检测[J]. 农业机械学报,2017,48(1):275-280. Lin Hao, Song Benteng, Jin Hongjuan, et al. Age discrimination of vinegar based on artificial olfaction visualization and image processing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 275-280. (in Chinese with English abstract)
[29] Shima B, Sharifuddin M Z, Mehrdad G, et al. Classification of cow milk using artificial neural network developed from the spectral data of single- and three-detector spectrophotometers[J]. Food Chemistry, 2019, 294: 309-315.
[30] Yang Junjie, Pan Jian, Zhu Shuangjie. Application of pca and slda methods for the classification and differentiation of cooked pork from Chinese indigenous pig breeds and a hybrid pig breed[J]. International Journal of Food Properties, 2014, 17(7):1518-1528.
[31] 于晶,温亚东,王萝萍,等. 近红外光谱定性分析中的特征波长筛选研究[J]. 光谱学与光谱分析,2013,33(11):2973-2977. Yu Jing, Wen Yadong, Wang Luoping, et al. Study of selecting characteristic wavelengths in qualitative analysis of near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 2973-2977.
Nondestructive testing and grading of preserved duck eggs based on machine vision and near-infrared spectroscopy
Wang Qiaohua1,2, Mei Lu1, Ma Meihu2,3, Gao Sheng1, Li Qinxu1
(1.,,,430070,;2.,,430070,;3,,430070,)
Preserved duck eggs are made from fresh duck eggs. The protein was denatured in the alkali liquor, and the preserved egg was divided into 3 grades according to the quality of the gel. The first grade eggs are the preserved duck egg that are solidified in a gel state and belong to the high quality eggs. The second grade eggs are the slight alkali-damaged. After peeling, there are cases of sticky shell, rotten head, sallow, etc. But they can still be eaten, which are the inferior eggs. The third grade eggs are the water-sounding egg. They are liquefied into water in eggs. They cannot be eaten, which are bad eggs. Over the years, the classification of preserved duck eggs in the egg industry is entirely dependent on manual work, which is cumbersome and inefficient, and the market urgently needs relevant detection technology.The quality classification of preserved duck egg gel was studied based on machine vision and near-infrared spectroscopy. It was found that the use of machine vision and near-infrared spectroscopy alone could not accurately classify preserved duck eggs, the grading accuracy was 75% and 78.33%, respectively. But the combination of the two technology could achieve the classification of preserved duck eggs. Firstly, the transmitted light images of preserved duck eggs were collected by using industrial camera. The MATLAB was used to extract 18 image color feature values in RGB、HSV and CIELab or Lab color eigenvalues. Then the extracted 18-dimensional features were reduced by principal component analysis (PCA). The 601 samples were randomly divided into 433 training sets and 168 test sets. And the genetic algorithm-support vector machine (GA-SVM) classification model was built for the three principal components of the PCA. The preserved duck egg samples were divided into edible eggs (high quality eggs and inferior eggs) and inedible eggs (bad eggs). The 60 inedible eggs (bad eggs) in the test set were all judged correctly. The 103 of the 108 edible eggs (high quality eggs and inferior eggs) were judged correctly and 5 were misjudged. Test set recognition rate of bad eggs was 100%. Then the near-infrared spectroscopy technique was used to obtain the original spectrum of edible eggs (high quality eggs and inferior eggs). Multiplicative scatter correction (MSC) was performed, and the characteristic wavelength was extracted by using competitive adaptive re-weighted sampling (CARS) which extracted 75 data in the range of 4 420-51 52 cm-1and 5 538-7 042 cm-1characteristic bands. The 401 samples were randomly divided into 293 training sets and 108 test sets. Based on the support vector machine (SVM), a hierarchical model was established for the characteristic wavelength variable, and edible high quality eggs and inferior eggs were separated. The test set selected 108 edible eggs, including 57 high quality eggs and 51 inferior eggs. 54 high quality eggs and 49 inferior eggs were judged correctly. The recognition rate of high quality egg test set was 96.49%, and that of inferior egg was 94.12%. The results showed that it was feasible to perform non-destructive classification of preserved duck egg based on machine vision and near-infrared spectroscopy. In practical applications, machine vision technology can be used to separate the inferior eggs, and then the near-infrared spectroscopy technique is used to separate the high-quality eggs from the defective eggs. The result provides a reference for realizing the online non-destructive testing of preserved duck eggs.
machine vision; near-infrared spectroscopy; gel quality; preserved duck egg; support vector machine
王巧华,梅 璐,马美湖,高 升,李庆旭. 利用机器视觉与近红外光谱技术的皮蛋无损检测与分级[J]. 农业工程学报,2019,35(24):314-321. doi:10.11975/j.issn.1002-6819.2019.24.037 http://www.tcsae.org
Wang Qiaohua, Mei Lu, Ma Meihu, Gao Sheng, Li Qinxu. Nondestructive testing and grading of preserved duck eggs based on machine vision and near-infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 314-321. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.037 http://www.tcsae.org
2019-08-19
2019-12-02
国家自然科学基金项目(31871863);公益性行业(农业)科研专项(201303084)
王巧华,教授,博士生导师,博士,研究方向为农畜禽产品无损检测。Email:wqh@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2019.24.037
TS253.7
A
1002-6819(2019)-24-0314-08