张桂英
摘 要:数学核心素养是学生在数学学习中,逐步形成的适应个人终身发展和社会发展需要的数学思维品质与关键能力。数形结合的思想是一种重要的数学思想方法,重视和加强数形结合思想方法的教学,能有效帮助学生理解数学知识,培养学生解决问题的能力,促进学生思维的发展,全面提升学生的数学核心素养。
关键词:核心素养 数形结合 思想渗透 应用探究
“数形结合” 就是根据数量与图形之间的对应关系,把抽象的数学语言与直观的图形相结合,使抽象思维和形象思维相结合,通过数与形的相互转化来解决数学问题的一种重要的数学思想,也是一种常用的数学方法。数形结合包括“以形助数”和“以数辅形” 两个方面。巧妙地应用数形结合思想解题,往往会使抽象问题直观化、复杂问题简单化,达到优化解题途径的目的。从“数” 的严谨性和“形” 的直观性两方面思考问题,拓展了解题思路,可起到事半功倍的效果。
一、数形结合帮助学生理解算理。
小学数学内容中,有相当部分的内容是计算问题。算理是计算教学的难点,学生只有真正理解算理,
知道为什么要这样做,才能掌握算法。因此,如何让学生更好地理解算理是每个老师在计算教学中要特别考虑的问题。算理是抽象的、难理解的,如何把它简单的呈现出来,数形结合很重要。例如分数乘分数这节课,如何让学生理解用分子相乘的积做分子,分母相乘的积做分母呢?教学 时可以让学生动手操作,先涂出一张纸的 ,再把这张纸的 平均分成5份,涂出其中的一份,这样就是 的 。通过引导学生观察,把一張纸平均分成2份,再把每一份再平均分成5份,这样就把一张纸平均分成了(2×5)份,其中的一份就是 。教学 时,也同样结合图形进行教学,最后再引导学生归纳出计算法则。这样让学生亲身经历、体验“数形结合”的过程,有了表象的支撑,学生才能更加有效地理解算理。
二、数形结合帮助学生理解抽象的数量关系。
数形结合应贯穿整个小学阶段所有解决问题的教学。从一年级的求比多比少问题、二年级的倍数问题到中高年级的和倍、差倍、相遇、追及、分数、比例问题,包括数学广角里面的植树问题、包容问题、鸡兔同笼问题等等都应充分运用数形结合,把抽象的数量关系,通过示意图、线段图、集合图、列表等方式表示出来。使较复杂的数量关系简单明了,丰富学生的表象,引发联想,启发思维,拓宽思路。通过数形结合,呈现较为具体直观的数学符号,有利于分析题中的数量关系,迅速找到解决问题的方法,提高学生分析问题和解决问题的能力。
三、数形结合帮助学生理解抽象的几何问题。
数形结合能够帮助小学生建立初步的几何知识体系,发展空间观念。课程标准指出:几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。徐利治说:几何直观是借助于见到的或想到的几何图形的形象关系产生对数量关系的直接感知 。特别是小学六年级的立体图形的教学中有些题目的题意比较抽象,部分学生理解有障碍。如果能够运用数形结合的方法加以分析,则可起到化难为易的效果,再难的题目也能迎刃而解。
在几何教学中,如果教师能充分利用学生形象思维的特点,用“形”解释、演示,帮助理解抽象的“数”,激发学生的再造性想象,激活学生的解题思路,让学生在潜移默化中悟出画图的方法,感受到数与形结合的优点,养成根据题意画图帮助理解的习惯,从而提高学生数形转化的能力,实现形象思维和抽象思维互补互助,相辅相成,就能为学生长远的学习奠定好的学习方法。
四、数形结合,帮助学生初步感知函数思想。
小学数学中虽然没有学习函数,但已经开始渗透函数思想。例如在学习用数对表示位置时,将“座位”平面图形抽象为比较形象的“直角坐标系”,建立“数对”与平面上“点”之间的一一对应关系。在此过程中,学生初步体验到,有了坐标后,整个平面就结构化了,可以用一对有顺序的数来确定平面上的一个点。
有了对直角坐标系的初步认识,学生在学习“正、反比例关系”时,就可以把具有这种关系的两个量在直角坐标系中“表示”出来,实际上就是正比例函数、反比例函数的图象,借助于形象的图象,来深入理解抽象的函数关系,例如,直观感知两个量的相依相存关系,当成正比例关系时,一个量增加另一个量也随着增加,并且是线性增加;当成反比例关系时,一个量增加,另一个量反而减少,根据图象可以直观地看出两个量变化的极限状态,一个量趋于无穷,另一个量趋于零。
总之,在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利地、高效率地学好数学知识,更用于学生学习兴趣的培养、智力的开发、能力的增强,为学生今后的数学学习打下坚实的基础。
参考文献
[1]屈丽珍.“数形结合”思想在小学数学教学中的应用分析[J].读与写,2018,15(30):157.
[2]吴美绵.以形助数"形"之有效——论数形结合在小学数学解决问题中的运用[J].华夏教师,2018,(25):49-50.
[3]杨江宛.数形结合思想在小学数学计算教学中的应用[J].数学大世界(下旬版),2018,(3):71,68.