张芹 奥婷 肖淑英
[摘要] 缺血性脑血管病是常见的慢性致残性疾病,严重影响患者生活质量。研究表明,表皮生长因子受体-细胞外信号调节激酶(EGFR-ERK)通路在缺血性脑血管病的病理生理过程中发挥了重要的作用,但具体机制不详。因此,本文对该通路在缺血性脑血管病中的相关研究进展作一综述,为缺血性脑血管病的进一步基础研究及临床治疗提供参考。
[关键词] 表皮生长因子受体;细胞外信号调节激酶;EGFR-ERK信号通路;缺血性脑血管病
[中图分类号] R743 [文献标识码] A [文章编号] 1673-7210(2018)03(c)-0036-05
[Abstract] Ischemic cerebrovascular disease (ICD) is a common chronic disabling disease. This disease seriously affects the quality of lives of patients. The research shows that the epidermal growth factor receptor-extracellular signal regulated kinase (EGFR-ERK) pathway plays an important role on the pathophysiology process in ICD. However, the mechanism is still unclear. This article reviews the progress of the EGFR-ERK pathway in ICD, which provides references for further basic research and clinical treatment of ICD.
[Key words] Epidermal growth factor receptor; Extracellular signal-regulated kinase; EGFR-ERK signaling pathway; Ischemic cerebrovascular disease
缺血性腦血管病具有发病率高、致死率高、致残率高、复发率高等特点,给社会和家庭带来沉重的经济负担和精神负担[1],是当前世界范围高度重视的公共卫生问题。其病理生理过程复杂[2],涉及氧自由基的积累、炎症、细胞坏死和凋亡等多个环节。研究表明,表皮生长因子对神经系统发育、营养有重要作用[3];可抑制自由基引起的过氧化损伤,保护神经,并参与梗死灶修复[4-5]。表皮生长因子受体-细胞外信号调节激酶(epidermal growth factor receptor-extracellular signal-regulated kinase,EGFR-ERK)通路在其中发挥了重要的保护作用,但具体机制尚不明确。因此,本文对该通路在缺血性脑血管病中的相关研究进展作一综述。
1 表皮生长因子及受体的结构及其在神经系统中的作用
1.1 表皮生长因子的结构及其在缺血性脑血管病及其他神经系统疾病中的作用
表皮生长因子(Epidermal growth factor,EGF)是1962年由Co-hen从雄鼠颌下腺中提取,主要由颌下腺分泌,可促进细胞分裂、分化、增殖的一种重要的神经营养因子,由53个氨基酸组成,分子量为6 kD,生理状态下,EGF几乎见于所有体液中。
目前认为在缺血性脑血管病中EGF是强效的有丝分裂原,具有保护缺血神经元,维持其生存的作用,与中枢神经系统细胞、组织的增殖、生长、分化及再生作用密切相关。在脑缺血后12 h,EGF在缺血中心区及缺血半暗带区的表达达到高峰,在缺血48 h时仍可维持较高水平,且其在缺血半暗带区的表达量明显高于缺血中心区[6]。在脑梗死后24~48 h内脑室内注入外源性EGF可改善早期神经结构和功能的重建[3]。在机体组织受损、缺氧和氧化应激等情况下,EGF表达水平显著升高,炎性因子、氧自由基等的产生减少,发挥保护作用[7-8]。EGF可影响脑梗死后脑室管膜下区(subventricular zone,SVZ)内神经干细胞(neural stem cells,NSCs)增殖和迁徙,减轻脑缺血后海马CA1区神经元的损伤,抑制自由基引起的过氧化反应,保护神经,并参与梗死灶修复[4-5]。经鞘内、脑室和皮层表面注射EGF,均可促进SVZ内源性NSCs增殖,且经脑室注射EGF与经皮层表面注射相比,细胞增殖无显著差异[9-10]。此外,对于亚急性期大脑中动脉梗死大鼠,EGF亦可明显缩短其康复时间[11]。有研究报道,EGF在急性脑梗死患者中呈动态变化,动态监测EGF水平可作为判断急性脑梗死损伤程度、评价疗效、评估预后的敏感指标[12]。在帕金森病患者中,EGF对黑质-纹状体多巴胺神经元有保护作用[13];阻断EGF的信息传递途径能明显影响神经轴突的生长,减弱对外周神经的营养作用[14]。
另有研究发现,EGF联合生长激素释放肽-6(growth hormone release peptide-6,GHRP-6)可以显著改善急性脑梗死的病理改变和临床表现,促进神经功能的恢复[15]。在局部和全脑缺血模型中,在EGF+GHRP-6组发现梗死体积和海马CA1区域密度都相似于低温处理组,该研究为EGF和GHRP-6联合使用提供了神经保护性证明[8]。肝素结合表皮生长因子(hepafin-binding epidermal growth factor,HB-EGF)是一种缺氧诱导的神经保护蛋白,在成年大鼠的局灶性脑缺血后发现HB-EGF减少梗死的体积并减弱缺血后神经功能缺陷,刺激神经元前体细胞的增殖,通过直接神经保护作用或促进神经发生改善脑损伤[16-17]。皮下注射碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)、EGF促进脑缺血大鼠模型内源性神经干细胞的增殖,bFGF和EGF联合有协同作用[18]。
1.2 表皮生长因子受体
EGF是EGFR-ERK信号转导通路的上游因子,与受体结合后,磷酸化激活ERK,启动一系列级联反应,促进细胞增殖。
EGFR是HER家族成员之一,是一巨大的跨膜糖蛋白,分子量约为180 kD[19]。EGFR广泛分布于哺乳动物细胞内,EGF与其受体结合,具有高亲和性、可饱和性、特异性等特征,能促进创伤愈合,已被用于角膜、胃、肠道、肝脏、骨骼、神经等多种组织创伤的研究。
EGFR可以激活下游的信号分子ERK和Elk-1从而促进细胞生存并维持细胞的正常功能,在肿瘤细胞的血管生成、恶性增殖和转移等多方面起着重要作用[20]。
2 ERK的结构及其作用
ERK是20世纪80年代末发现的一类丝/苏氨酸蛋白激酶,是传递丝裂原信号的信号转导蛋白。已知ERK家族有5个亚族,包括ERK1~ERK5。ERK1和ERK2是ERK家族中研究最彻底的,其表达广泛,分子量分别为44 kD和42 kD。ERK1/2是EGFR-ERK通路下游的细胞因子,是丝裂原活化蛋白激酶家族的成员,广泛存在于各种动物细胞中,参与细胞增殖分化与凋亡、细胞骨架的构建、细胞形态维持等多种生物学反应[21]。磷酸化ERK(p-ERK)是细胞功能活跃状态的标志,p-ERK1/2由胞质转位到核内,调节包括转录因子在内的核蛋白活性从而产生生物学功能,ERK的活化与细胞的增殖、分化、癌变及恶性进展程度密切相关[22-23],也可调节凋亡相关因子,如bcl-2、bcl-XL、c-myc等的表达,促进细胞的生长、发育和增殖,使细胞从G1期进入S期[24-25]。通过检测组织中p-ERK可推测组织的增殖情况。
大量研究表明,ERK在多种缺血再灌注模型中被激活且表达增加[26-28]。ERK1/2通路与缺血性脑卒中关系密切,其对缺血性脑卒中发挥保护作用或损害作用,尚有争议[29]。尽管如此,很多证据都肯定了ERK1/2通路的激活对缺血性脑卒中的保护性作用,缺血再灌注损伤发生后,ERK1/2通路的激活能抑制损伤脑组织炎性反应的发生[30],促进骨桥蛋白的分泌,从而减少兴奋性氨基酸的释放[31],增强IL-20的表达,促进细胞增殖,从而保护缺血缺氧的脑组织[32]。在脑缺血缺氧或缺血再灌注后损伤中心区ERK的激活主要发生在损伤后早期(2 min~2 h),以神经元为主[33-34];与损伤中心区不同,在未受损区的研究发现,p-ERK的表达以星形胶质细胞为主,且损伤后,ERK在未受损区星形胶质细胞中的激活早于在损伤中心区星形胶质细胞中ERK的激活[35]。在体外培养的星形胶质细胞中激活的ERK发挥保护作用[36]。
EGFR被视为一个重要的胶质瘤治疗靶点[37-39]。但通过EGFR来治疗肿瘤的具体分子机制尚不明确。GATA2是EGFR信号通路下游效应分子之一,可以调控多发性神经胶质母细胞瘤(glioblastomamultiform,GBM)細胞的恶性生物学特征。Elk-1转录因子,作为Ets基因家族成员之一,可以激活ERK信号途径[40]。有研究认为GATA2在EGFR/ERK/Elk-1信号通路中具有重要作用,该研究通过100 ng/mL EGF预处理,随EGFR磷酸化水平升高,GATA2表达明显上调,抑制EGFR/ERK或下调Elk-1的表达,使GATA2表达明显降低,阻止肿瘤发展;结果表明GATA2是通过EGFR/ERK/Elk-1信号通路来促进神经胶质瘤的进展[41]。
3 EGFR-ERK通路在缺血性脑血管病方面的研究进展
细胞的信号转导是机体生命活动中生理功能调节的基础。细胞信号转导和疾病关系是当前生命科学研究的一个热点,随着研究的深入,已阐明多种遗传疾病的发生机制,且证实了许多危重病,如炎症、感染、心脑血管疾病、糖尿病、恶性肿瘤等的发病与信号转导异常有密切的关系。
脑缺血可引起神经元变性、坏死,在脑缺血病灶中,缺血核心区以神经元坏死为主,缺血半暗带区以细胞凋亡为主[42]。研究表明,抑制缺血半暗带区细胞的凋亡,可减少神经细胞的死亡和减少脑梗死的面积[43-44]。
脑缺血再灌注损伤可以导致大量炎性因子的释放,包括IL-1、IL-6、TNF-a及活性氧等,它们在缺血再灌注损伤中发挥了重要作用[45-46],抑制其表达可减轻缺血性脑损伤[47]。余剑等[3]的研究表明EGF对脑缺血后神经系统营养、结构及功能重建、神经修复等均有重要作用。AG1487作为EGF受体拮抗剂,可诱导EGFR 形成无活性的二聚体形式,阻止受体间的信号传导,从而拮抗EGF的生物学效应[48],但是,目前在缺血性脑血管病领域尚无相关研究。
在生理和病理条件下,各种外界信号刺激均可激活ERK信号通路,调控基因转录等,从而影响神经元的功能。脑梗死后的缺血再灌注,启动了ERK信号转导通路,导致N-甲基-D-天冬氨酸(N-methyl-D-aspartate receptor,NMDA)受体活性降低,阻止Ca2+内流,在神经元功能保护中发挥了重要作用[49]。细胞外ERK1/2转导通路的激活,可促进成年鼠少突胶质细胞新的髓鞘形成,改善神经系统功能[50]。在MCAO大鼠模型中,脑缺血发生后0、6 h经腹腔注射ERK抑制剂U0126,可明显阻断ERK1/2的磷酸化,减少脑梗死体积[51]。
综上所述,脑梗死发生后EGFR和ERK的上调可以起到脑保护作用,外源性EGF促进了这一保护作用,从而改善脑梗死的预后。但是,EGFR-ERK通路对脑梗死保护作用的具体机制尚未明确,因此对该机制的研究具有重要意义。
[参考文献]
[1] Tong X,George MG,Gillespie C,et al. Trends in hospitalizations and cost associated with stroke by age,United States 2003-2012 [J]. Int J Stroke,2016,11(8):874-881.
[2] James R,Searcy JL,Le Bihan T,et al. Proteomic analysis of mitochondria in APOE transgenic mice and in response to an ischemic challenge [J]. J Cereb Blood Flow Metab,2012,32(1):164-176.
[3] 余剑,曾进胜,盛文利,等.表皮生长因子促进大鼠脑梗死后的早期神经功能康复[J].中国神经精神疾病杂志, 2005,31(2):111-114.
[4] 余剑,曾进胜,赵湛,等.表皮生长因子促进脑梗死后室管膜下区神经干细胞迁徙机制的初步研究[J].中风与神经疾病杂志,2007,24(1):4-7.
[5] 周金桥,刘秋红,孙剑瑞.颅脑损伤并发应激性溃疡时血清表皮生长因子浓度和氧化物岐化酶活力的变化及临床意义[J].2010,17(1):72-74.
[6] 沈顺姬,杨净,李婧,等.大鼠局灶性脑缺血损伤中表皮生长因子的表达变化的意义[J].中国临床康复,2003,7(31):4180-4181.
[7] Rocourt DV,Mehta VB,Besner GE. Heparin-binding EGF-like growth factor decreases inflammatory cytokine expression after intestinal ischemia/reperfusion injury [J]. J Surg Res,2007,139(2):269-273.
[8] Subiros N,Perez-Saad H,Aldana L,et al. Neuroprotective effect of epidermal growth factor plus growth hormone-releasing peptide-6 resembles hypothermia in experimental stroke [J]. Neurol Res,2016,38(11):950-958.
[9] Wang Y,Cooke MJ,Lapitsky Y,et al. Transport of epidermal growth factor in the stroke-injured brain [J]. J Control Release,2011,149(3):225-235.
[10] Cooke MJ,Wang Y,Morshead CM,et al. Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain [J]. Biomaterials,2011,32(24):5688-5697.
[11] Jeffers MS,Hoyles A,Morshead C,et al. Epidermal growth factor and erythropoietin infusion accelerate functional recovery in combination with rehabilitation [J]. Stroke,2014,45(6):1856-1858.
[12] 张鸿,宋利春,庞秀慧.急性脑梗死患者血清表皮生长因子含量与神经功能缺损评分的关系[J].现代康复,2001, 5(8):52-55.
[13] Hanke M,Farkas LM,Jakob M,et al. Heparin-binding epidermal growth factor-like growth factor:a component in chromaffin granules which promotes the survival of nig?鄄rostriatal dopaminergic neurones in vitro and in vivo [J]. Neuroscience,2004,124(4):757-766.
[14] Hermann PM,Nicol JJ,Nagle GT,et al. Epidermal growth factor-dependent enhancement of axonal regeneration in the pond snail Lymnaea stagnalis:role of phagocyte survival [J]. J Comp Neurol,2005,492(4):383-400.
[15] Garcia DBD,Martinez NS,Coro-Antich RM,et al. Epidermal growth factor and growth hormone-releasing peptide-6:combined therapeutic approach in experimental stroke [J]. Restor Neurol Neurosci,2013,31(2):213-223.
[16] 景迎春,李擎瑜,劉彬,等.HB-EGF可挽救ADAM17缺失导致的大脑皮层神经前体细胞分化迁移异常[J].复旦学报:自然科学版,2017,56(5):602-609.
[17] Jin K,Sun Y,Xie L,et al. Post-ischemic administration of heparin-binding epidermal growth factor-like growth factor(HB-EGF)reduces infarct size and modifies neurogenesis after focal cerebral ischemia in the rat [J]. J Cereb Blood Flow Metab,2004,24(4):399-408.
[18] 李曉波,丁新生.碱性成纤维细胞生长因子、表皮生长对脑缺血大鼠内源性神经干细胞增殖的影响[J].临床神经病学杂志,2006,19(3):188-190.
[19] Menard S,Casalini P,Campiglio M,et al. Role of HER2/neu in tumor progression and therapy [J]. Cell Mol Life Sci,2004,61(23):2965-2978.
[20] Steelman LS,Franklin RA,Abrams SL,et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy [J]. Leukemia,2011,25(7):1080-1094.
[21] Mebratu Y,Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death:is subcellular localization the answer?[J]. Cell Cycle,2009,8(8):1168-1175.
[22] Hopfner M,Schuppan D,Scherubl H. Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer [J]. World J Gastroenterol,2008,14(1):1-14.
[23] Davidson B,Givant-Horwitz V,Lazarovici P,et al. Matrix metalloproteinases(MMP),EMMPRIN(extracellular matrix metalloproteinase inducer)and mitogen-activated protein kinases(MAPK):co-expression in metastatic serous ovarian carcinoma [J]. Clin Exp Metastasis,2003, 20(7):621-631.
[24] Chang F,Steelman LS,Lee JT,et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors:potential targeting for therapeutic intervention [J]. Leukemia,2003,17(7):1263-1293.
[25] Roovers K,Assoian RK. Integrating the MAP kinase signal into the G1 phase cell cycle machinery [J]. Bioessays,2000,22(9):818-826.
[26] Wang ZF,Tang LL,Yan H,et al. Effects of huperzine A on memory deficits and neurotrophic factors production after transient cerebral ischemia and reperfusion in mice [J]. Pharmacol Biochem Behav,2006,83(4):603-611.
[27] Zuo Z,Wang Y,Huang Y. Isoflurane preconditioning protects human neuroblastoma SH-SY5Y cells against in vitro simulated ischemia-reperfusion through the activation of extracellular signal-regulated kinases pathway [J]. Eur J Pharmacol,2006,542(1-3):84-91.
[28] Minutoli L,Antonuccio P,Romeo C,et al. Evidence for a role of mitogen-activated protein kinase 3/mitogen-activated protein kinase in the development of testicular ischemia-reperfusion injury [J]. Biol Reprod,2005,73(4):730-736.
[29] Sawe N,Steinberg G,Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke [J]. J Neurosci Res,2008,86(8):1659-1669.
[30] Sironi L,Banfi C,Brioschi M,et al. Activation of NF-kB and ERK1/2 after permanent focal ischemia is abolished by simvastatin treatment [J]. Neurobiol Dis,2006,22(2):445-451.
[31] Meller R,Stevens SL,Minami M,et al. Neuroprotection by osteopontin in stroke [J]. J Cereb Blood Flow Metab,2005,25(2):217-225.
[32] Chen WY,Chang MS. IL-20 is regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke [J]. J Immunol,2009,182(8):5003-5012.
[33] Wang ZQ,Wu DC,Huang FP,et al. Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia [J]. Brain Res,2004,996(1):55-66.
[34] Gu Z,Jiang Q,Zhang G. Extracellular signal-regulated kinase 1/2 activation in hippocampus after cerebral isch?鄄emia may not interfere with postischemic cell death [J]. Brain Res,2001,901(1-2):79-84.
[35] Wang X,Zhu C,Qiu L,et al. Activation of ERK1/2 after neonatal rat cerebral hypoxia-ischaemia [J]. J Neuroc?鄄hem,2003,86(2):351-362.
[36] Jiang Z,Zhang Y,Chen X,et al. Activation of Erk1/2 and Akt in astrocytes under ischemia [J]. Biochem Biophys Res Commun,2002,294(3):726-733.
[37] Labussiere M,Boisselier B,Mokhtari K,et al. Combined analysis of TERT,EGFR,and IDH status defines distinct prognostic glioblastoma classes [J]. Neurology,2014,83(13):1200-1206.
[38] Chamberlain MC,Sanson M. Combined analysis of TERT,EGFR,and IDH status defines distinct prognostic gliobl?鄄astoma classes [J]. Neurology,2015,84(19):2007.
[39] Taylor TE,Furnari FB,Cavenee WK. Targeting EGFR for treatment of glioblastoma:molecular basis to overcome resistance [J]. Curr Cancer Drug Targets,2012,12(3):197-209.
[40] Goncharenko-Khaider N,Matte I,Lane D,et al. Ovarian cancer ascites increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate TRAIL-induced apoptosis [J]. Mol Cancer,2012,11:84.
[41] Wang Z,Yuan H,Sun C,et al. GATA2 promotes glioma progression through EGFR/ERK/Elk-1 pathway [J]. Med Oncol,2015,32(4):87.
[42] Ferrer I,Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia:life and death struggle in the penumbra [J]. J Neuropathol Exp Neurol,2003,62(4):329-339.
[43] Tsubokawa T,Yamaguchi-Okada M,Calvert JW,et al. Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats [J]. J Neurosci Res,2006,84(4):832-840.
[44] Anagli J,Abounit K,Stemmer P,et al. Effects of cathepsins B and L inhibition on postischemic protein alterations in the brain [J]. Biochem Biophys Res Commun,2008,366(1):86-91.
[45] Iadecola C,Alexander M. Cerebral ischemia and inflammation [J]. Curr Opin Neurol,2001,14(1):89-94.