虞向阳 谢宗源 陈建立
[摘要] 目的 探討优化心肌能量代谢对肠系膜上静脉血栓形成大鼠肠道组织中低氧诱导因子-1(HIF-1)与血管内皮生长因子(VEGF)表达的影响。 方法 将45只健康成年SD大鼠按随机数字表法分为对照组、模型组及治疗组,每组各15只。模型组动物进行造模试验,经皮下注射生理盐水0.2 mL/100 g后常规饲养;治疗组动物经造模后,经尾静脉注射曲美他嗪(10 mg/kg);对照组则仅打开腹腔,不阻断血运,后经皮下注射生理盐水0.2 mL/100 g。每组均间隔12 h重复给予药物干预,直至术后72 h。观察并比较三组大鼠一般状态、腹腔情况、病理情况及HIF-1、VEGF、丙二醛(MDA)、肌酸激酶(CK)和三磷酸腺苷(ATP)水平。结果 对照组一般状况、腹腔情况、肠道组织病理学观察均显示正常,模型组肠道坏死,部分区域伴穿孔,治疗组意识、活动、肠壁血运基本恢复正常,无瘀血水肿及坏死脱落。与对照组比较,模型组HIF-1、VEGF、MDA、CK升高明显,ATP降低明显;与模型组比较,治疗组HIF-1、VEGF、MDA、CK降低明显,ATP升高明显,差异均有统计学意义(P < 0.05)。 结论 优化能量代谢剂曲美他嗪可清除自由基对心肌细胞的损害,明显降低VEGF、HIF-1水平,改善动物肠道上静脉血栓状况,效果好。
[关键词] 优化心肌能量代谢;肠系膜上静脉血栓形成;低氧诱导因子-1;血管内皮生长因子;三磷酸腺苷
[中图分类号] R572.3 [文献标识码] A [文章编号] 1673-7210(2018)03(c)-0013-05
[Abstract] Objective To study the effect of optimized myocardial energy metabolism on the expression of hypoxic induction factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) in rats with superior mesenteric venous thrombosis. Methods Forty-five healthy adult SD rats were divided into control group, model group and treatment group by random number table. The model group animals were tested for the model, which were fed after subcutaneous injection of 0.2 mL/100 g of physiological saline solution. After the animals were formed, the tail vein was injected with Trimetazidine (10 mg/kg) in the treatment group. The control group was only opened the abdominal cavity, but was not block the blood transport, then injected the physiological saline with 0.2 mL/100 g. Each group was given a 12 h interval for drug intervention until 72 h after surgery. General state, abdominal cavity condition and pathological condition were observed, HIF-1, VEGF and malondialdehyde (MDA), creatine kinase (CK), and adenosine triphosphate (ATP) levels were determined. Results The general situation, peritoneal condition and intestinal histopathological observation of control group were normal, while intestinal of the model group was necrosis, the part region was perforation, consciousness and activity of treatment group, blood transport of intestinal was basically normal, and there was no bleeding edema and no necrosis. Compared with the control group, the levels of HIF-1, VEGF, MDA and CK in the model group were significantly higher, ATP level was decreased, with statistically significant difference (P < 0.05). Compared with the model group, the levels of HIF-1, VEGF, MDA and CK in the treatment group were decreased significantly, ATP level was higher, with statistically significant difference (P < 0.05). Conclusion Optimize energy metabolizer Trimetazidine can remove free radical damage to myocardial cells, and can significantly reduce VEGF and hif-1 levels, improve the condition of venous thrombosis in animal intestines with good effect.
[Key words] Optimized myocardial energy metabolism; Superior mesenteric venous thrombosis; Hypoxia-Inducible Factor-1; Vascular endothelial growth factor; Adenosine triphosphate
肠系膜上静脉血栓形成(superior mesenteric venous thrombosis,SMVT)作为MVT累及最为常见的一种血管源性急腹症[1-2],近年来随着多排螺旋CT技术的快速发展,其检出率明显提高,但广大医务工作者对SMVT仍还存在一些模糊认识,认知较局限,对其治疗仍主要根据病情症状体征的严重程度而定,但治疗效果却不尽如人意。
能量代谢是近年来研究的热点,优化能量代谢剂曲美他嗪(Trimetazidine,TMZ)作为哌嗪类衍生物的一种,在改善缺血、缺氧心肌细胞的能量代谢方面作用显著,可对抗心肌缺血[3-8]。目前关于TMZ在冠心病治疗中的应用较多,但关于其在SMVT中的应用国内外相关报道极少。再加之发病率低,合适动物模型的建及其有效的治疗方法的探讨对于该疾病的研究较为重要。为此,本研究采用结扎法建立SMVT大鼠模型并采用TMZ进行治疗,以探讨优化心肌能量代谢对SMVT的干预效果,为进一步研究该病提供基础依据。
1 材料与方法
1.1 实验动物及分组
健康成年雄性SD大鼠,由华北理工大学动物实验中心提供,动物合格证号:SYXK(冀)2016-0040,体重220~240 g,适应性饲养5 d,自由饮水饮食。45只大鼠按随机数字表法分为对照组、模型组及治疗组,每组各15只。本研究所用动物均经华北理工大学动物伦理委员会审核并批准。
1.2仪器及试药
BX53荧光显微镜(奥林巴斯OLYMPUS生产),小动物麻醉机及酶标仪(美国matrx),七氟醚(江苏恩华药业股份有限公司),低氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)、血管内皮生长因子(vascular endothelial growth factor,VEGF)、丙二醛(malonic dialdehyde,MDA)、肌酸激酶(creatine kinase,CK)、三磷酸腺苷(adenosine-triphosphate,ATP)试剂盒均购自南京建成公司。
1.3 方法
模型组动物进行造模试验,经皮下注射生理盐水0.2 mL/100 g后常规饲养;治疗组动物经造模后,经尾静脉注射TMZ(10 mg/kg);对照组则仅打开腹腔,不阻断血运,后经皮下注射生理盐水0.2 mL/100 g。每組均间隔12 h重复给予药物干预,直至术后72 h 。
1.4 建立SMVT的动物模型
实验前大鼠禁食禁水12 h,2%七氟醚吸入麻醉,取其仰卧位,并固定于手术台,术区备皮,消毒铺巾,在大鼠下腹部做一长2.5 cm的正中切口,找到盲肠,提出距回盲部5 cm处的小肠,充分暴露肠系膜。即用7-0无损伤尼龙线结扎近端小肠内侧缘4 cm处膜静脉一级分支及两端弓状静脉,肠道充血且为暗红色为造模成功的标志。观察脏器有无损伤或出血,术毕以3-0丝线逐层关闭腹腔。术中注意保护暴露的肠管。实验操作完毕,将动物单独放于保温箱中待苏醒,术日禁食禁水,10%葡萄糖注射液皮下注射5 mL,术后第2天正常饮食。
1.5观察指标
一般状态及腹腔情况观察:一般状态主要为活动、大小便情况。术后12、24、72 h再次开腹探查,观察肠道有无粘连,有无侧支血管形成,有无肠道瘀血及坏死发生,以及肠道蠕动等情况。
病理情况观察:术后12、24、72 h 2%七氟醚吸入麻醉,二次开腹,中央切断受累肠管,并用生理盐水冲洗干净,清除肠内物,选择自切断处一端切取肠管1 cm,4%多聚甲醛溶液中浸泡固定,常规石蜡包埋,连续切片,厚度4 μm,HE染色,荧光显微镜下观察病理变化。
HIF-1、VEGF及MDA、CK、ATP水平的测定:于术后72 h抽取尾静脉血5 mL,于洁净玻璃管内离心,3000 r/min(r=10 cm),20 min后取上清液,采用ELISA法测定血清HIF-1、VEGF及MDA、CK、ATP水平,具体操作步骤参照试剂盒内说明书。
1.6 统计学方法
采用统计软件SPSS 18.0对所得实验数据进行统计学分析,计量资料数据以均数±标准差(x±s)表示,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验,以P < 0.05为差异显著。
2 结果
2.1 各组动物的一般状态观察
对照组正常生长,活动自如,神态精神,皮毛光亮,饮食及大小便正常;模型组术后8 h出现便血,并逐渐加重,1只因栓塞严重而死亡;治疗组大鼠术后2 h稍萎靡,但意识逐步恢复,随着时间延长,活动逐步趋于正常。
2.2 腹腔情况观察
对照组肠道组织均正常表现,无水肿、无血性腹水,肠蠕动完全正常。模型组:术后12 h大鼠肠系膜结扎区域肠道系膜发现暗红色瘀血,肠壁水肿加重,血性腹水不断增多;术后24 h肠道损害情况继续加重,暗红色腹水,肠壁高度水肿,肠蠕动减弱,肠壁间严重粘连;术后72 h腹水暗红色加深,肠道明显坏死,部分肠壁已出现穿孔。治疗组:术后12 h肠壁瘀血水肿减轻,肠道轻度痉挛,血性腹水减少;术后24 h肠壁及肠系膜水肿缓解明显,腹水量显著减少,颜色淡红色,腹腔肠管无粘连;术后72 h肠壁血运基本恢复正常,未发现水肿瘀血,肠蠕动正常。见图1。
2.3 肠道组织病理学观察
对照组:术后肠壁全层及肠系膜均正常,无肠道平滑肌坏死及肠道黏膜坏死脱落。模型组:术后12 h肠壁及肠系膜瘀血扩张,表现加重,肠道黏膜及肠道平滑肌大量脱落坏死;术后24 h肠道平滑肌坏死区域扩大明显;术后72 h肠道平滑肌全层坏死,部分区域出现穿孔。治疗组:术后12 h术后肠壁及肠系膜广泛瘀血表现减轻,肠道黏膜坏死脱落有所缓解,部分区域坏死肠道平滑肌改善;术后24 h肠道黏膜未出现坏死脱落,肠道平滑肌坏死范围逐步缩小;术后72 h肠道及肠系膜瘀血改善,肠道黏膜及肠道平滑肌未再发生坏死脱落。见图2。
2.4 各组大鼠肠道中HIF-1及VEGF表达比较
三组间HIF-1及VEGF比較,差异有统计学意义(P < 0.05)。组间两两比较:与对照组比较,模型组HIF-1及VEGF升高明显;与模型组比较,治疗组HIF-1及VEGF降低明显,差异均有统计学意义(P < 0.05)。见表1。
2.5 各组大鼠肠道组织中MDA、CK、ATP水平比较
三组间MDA 、CK、ATP水平比较,差异有统计学意义(P < 0.05)。组间两两比较:与对照组比较,模型组MDA、CK升高明显,ATP降低明显;与模型组比较,治疗组MDA、CK降低明显,ATP升高明显,差异均有统计学意义(P < 0.05)。表2。
3 讨论
SMVT的临床表现一般是非特异性,易导致误诊。对于腹水并伴有血栓疾病史或家族史的患者,临床上要高度怀疑SMVT,SMVT腹痛的程度与体征存在不相符的情况[9-11]。一般而言,SMVT腹痛常表现为脐周的绞痛,并存在恶心呕吐、腹泻等症状[12],其次15%的患者存在呕血、便血,50%的患者存在便潜血[13-16],严重者常会危及生命。
心肌能量代谢是影响患者心功能的重要因素。随着临床医师对SMVT的认识逐渐深入,其治疗方法也在不断发展,但其在SMVT中的应用研究尚少。TMZ作为调节心肌能量代谢药物,通过降低游离脂肪酸的氧化速率,减轻线粒体内钙聚积,使心肌细胞内氧自由基产生减少,进而保护线粒体、抗氧化应激等来保护心肌,维持ATP的产生和缺血心肌细胞的能量代谢及收缩功能[17-19]。具体过程为:可抑制线粒体内长链3-酮酰辅酶A硫解酶来减少游离脂肪酸β-氧化,促进葡萄糖的有氧氧化,降低心肌对脂肪酸的利用程度,维持ATP的水平,进而达到优化心肌能量代谢的目的。其还能够利用细胞内部分代谢相关酶,降低乳酸脱氢酶的释放,使得细胞内的乳酸堆积减少,缓解细胞内酸中毒,同时抑制血小板聚集及心肌组织中性粒细胞浸润,降低心肌梗死的发生。另外,TMZ还通过保护线粒体的正常功能,增加心肌细胞的ATP含量;减少氧化应激过程中心肌线粒体钙超负荷。本研究结果提示与上述论述一致,可见TMZ具有清除自由基对心肌细胞损害的作用,是一种治疗SMVT效果较好的优化能量代谢剂。
本实验还显示,模型动物术后24 h肠管间粘连严重,大量侧支血管出现,72 h最为严重,且有血性腹水形成,暗红色血,病理结果与上述分析一致,提示造模成功。治疗组肠道瘀血情况在12 h有所缓解,24 h逐渐恢复,72 h趋于转归,可见阻断肠道内径6 cm范围肠系膜静脉一级分支及边缘静脉,在优化心肌能量代谢后改善,提示小范围SMVT肠道损害经优化心肌能量代谢可以恢复。
VEGF作为多功能血管通透因子的一种,可于全身血管内皮细胞发挥作用,加速内皮细胞的分裂、增以及迁移,并参与血管的新生[20]。其还能够改善血管通透性、营养并保护神经。HIF-1可参与细胞缺氧诱导的特异应答反应,在缺氧诱导的基因表达中发挥关键作用[21]。同时可增加VEGF及多种血管生成因子的表达,加速生理性和病理性微血管的生成,由于新生血管为非功能性血管,当其通透性增加,斑块内发生出血或破裂,引发血栓。本研究显示,模型动物VEGF和HIF-1的表达明显高于对照组,治疗组动物血清VEGF和HIF-1水平降低明显,表明VEGF、HIF-1在SMVT动物血清中呈高表达;优化心肌能量代谢可明显改善动物肠道上静脉血栓状况。
综上,优化能量代谢剂TMZ通过降低SMVT动物血清MDA和CK含量,增加心肌中ATP含量来清除自由基对心肌细胞损害;同时可明显改善动物肠道上静脉血栓状况,效果较好。
[参考文献]
[1] Osti NP,Sah DN,Bhandari RS. Successful medical management of acute mesenteric ischemia due to superior mesenteric and portal vein thrombosis in a 27-year-old man with protein S deficiency:a case report [J]. J Med Case Rep,2017,11(1):315.
[2] Song W,Yang Q,Chen L,et al. Pancreatoduodenectomy combined with portal-superior mesenteric vein resection and reconstruction with interposition grafts for cancer: a meta-analysis [J]. Oncotarget,2017,8(46):81 520-81 528.
[3] Liu Z,Chen JM,Huang H,et al. The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway [J]. Metabolism,2016,65(3):122-130.
[4] Cavar M,Ljubkovic M,Bulat C,et al. Trimetazidine does not alter metabolic substrate oxidation in cardiac mitochondria of target patient population [J]. Br J Pharmacol,2016,173(9):1529-1540.
[5] Hassanzadeh G,Hosseini A,Pasbakhsh P,et al. Trimetazi?鄄dine prevents oxidative changes induced in a rat model of sporadic type of Alzheimer's disease [J]. Acta Med Iran,2015,53(1):17-24.
[6] Kuzmicic J,Parra V,Verdejo HE,et al. Trimetazidine pre?鄄vents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes [J]. Biochem Pharmacol,2014,91(3):323-336.
[7] Jatain S,Kapoor A,Sinha A,et al. Metabolic manipulation in dilated cardiomyopathy:assessing the role of trimetazidine [J]. Indian Heart J,2016,68(6):803-808.
[8] Chen A,Li W,Chen X,et al. Trimetazidine attenuates pressure overload-induced early cardiac energy dysfunction via regulation of neuropeptide Y system in a rat model of abdominal aortic constriction [J]. BMC Cardiovasc Disord,2016,16(1):225.
[9] Kwon JH,Han YH,Lee JK. Conservative management of spontaneous isolated dissection of the superior mesenteric artery [J]. Gastroenterol Res Pract,2017,2017:9 623 039.
[10] Juszkat R,Klimont M, ■liwa M,et al. Fractured Superior Mesenteric Artery Stent With Stent Displacement Leading to Recurrent Symptoms of Superior Mesenteric Ischemia [J]. Vasc Endovascular Surg,2017,51(6):400-402.
[11] Akuzawa N,Kurabayashi M,Suzuki T,et al. Spontaneous isolated dissection of the superior mesenteric artery and aneurysm formation resulting from segmental arterial mediolysis:a case report [J]. Diagn Pathol,2017,12(1):74.
[12] Chen TY,Wu CH,Hsu WF,et al. Primary endovascular intervention for acute mesenteric ischemia performed by interventional cardiologists - a single center experience [J]. ActaCardiol Sin,2017,33(4):439-446.
[13] Kim HK,Hwang D,Park S,et al. Effect of clinical suspicion by referral physician and early outcomes in patients with acute superior mesenteric artery embolism [J]. Vasc Spe?鄄cialist Int,2017,33(3):99-107.
[14] Ding W,Wang K,Liu B,et al. Open abdomen improves survival in patients with peritonitis secondary to acute superior mesenteric artery occlusion [J]. J Clin Gastroen?鄄terol,2017,51(9):e77-e82.
[15] Chatra PS. Acute superior mesenteric artery occlusion complicated by basilar artery occlusion [J]. Radiol Case Rep,2017,12(3):500-503.
[16] Kim HK,Hwang D,Park S,et al. Treatment outcomes and risk factors for bowel infarction in patients with acute superior mesenteric venous thrombosis [J]. J VascSurg Venous Lymphat Disord,2017,5(5):638-646.
[17] 林麗,冯林松,吴国芳.曲美他嗪在心血管疾病中的药理学研究进展[J].实用临床医学,2016(2):99-101,107.
[18] 高想,张锋莉,唐艳芬,等.曲美他嗪对大鼠心力衰竭模型心肌能量代谢的干预[J].医学研究杂志,2012(6):145-147.
[19] 邢靖贤.曲美他嗪对兔肺动脉高压致右心衰竭的心功能及心肌代谢的影响[D].石家庄:河北医科大学,2013: 45.
[20] Yum S,Jeong S,Kim D,et al. Minoxidil induction of VEGF is mediated by Inhibition of HIF-Prolyl hydroxylase [J]. Int J MolSci,2017,19(1):25.
[21] 陈越.HIF-1α对缺氧状态下近曲肾小管上皮细胞的作用和分子机制的研究[D].上海:复旦大学,2010.
(收稿日期:2017-12-25 本文编辑:李岳泽)