唐浩文,蒙 轩,吕文平,董家鸿
解放军总医院/解放军医学院 肝胆外科,北京 100853
胆管癌是指源于胆道系统,由多种具有胆管细胞分化特征的上皮细胞构成的恶性肿瘤。根据其发生部位可分为肝内胆管癌、肝门部胆管癌和远端胆管癌[1-6]。在肝胆恶性肿瘤中,胆管癌的发病率仅次于肝细胞癌,且在过去40年中胆管癌的总发病率在世界范围内呈上升趋势[1,2,7-10]。据报道,胆管癌在英国年发病率为0.01% ~ 0.02%[1,11],而在我国年发病率为0.01% ~ 0.2%[1,3,12-13]。胆管癌恶性程度高,且早期诊断困难,导致多数患者在确诊时已进入晚期。仅约35%的患者可早期确诊并可通过手术切除,但文献报道术后5年生存率不超过25%[1,13-15]。随着肿瘤生物学的发展,已有诸多肿瘤可通过分子标记物的检测达到早期诊断、预后评估和指导治疗的目的。本文总结既往胆管癌相关分子标记物的研究现状和最新进展,为临床应用及研究提供参考。
肿瘤抑制基因是一类存在于正常细胞中,与原癌基因共同调控细胞生长和分化的基因,如Rb基因、p53基因。p53基因位于常染色体17p13.1,调控细胞周期G1/S和G2/M。当细胞DNA遭到严重破坏时,p53基因被激活并诱导细胞凋亡。p53发生基因突变可导致缺陷DNA大量复制,甚至发展为癌症[16-18]。研究发现,约52.8%的胆管癌患者p53蛋白表达阳性[19-21]。在远端胆管癌中,p53过表达与患者生存率呈负相关[22]。肝门部胆管癌和远端胆管癌手术切除后患者中,p53结合蛋白1表达与肿瘤局部复发呈正相关[23]。
DPC4是另一类肿瘤抑制基因,其蛋白产物Smad4参与转化生长因子β的信号传导,抑制细胞增殖。DPC4基因缺陷已被证实可导致细胞周期G1至S期进程加快,进而加速细胞增殖[24-25]。较正常肝内胆管,肝内胆管癌组织中DPC4/Smad4 mRNA表达显著下降[26]。Rb基因、p73基因等其他肿瘤抑制基因与胆管癌早期诊断和预后的关系仍需进一步研究探索。
Ras致癌基因家族包括H-ras、K-ras和N-ras,其功能是编码生长分化因子受体下游的信号转导蛋白-P21蛋白[27]。P21蛋白是位于细胞膜内侧的GTP/GDP结合蛋白,当生长分化因子将信号传递至P21蛋白时,P21和GTP结合并激活下游信号通路,将生长分化信号传入细胞内;同时P21有GTP酶活性,使GTP水解为GDP,信号通路关闭。当Ras基因突变时,P21蛋白的GTP酶活性减弱,可导致细胞不可控的增殖、恶变[28]。胆管癌相关的Ras基因主要是K-ras基因。Chen等[29]对86例肝内胆管癌手术患者资料进行回顾性分析发现,K-ras基因突变(基因水平点突变,主要位于第12、13和61号密码子)是肝内胆管癌患者预后的重要指标,伴有K-ras基因突变的患者手术术后中位生存时间为5.9个月,而不伴K-ras基因突变患者生存时间为19.0个月。Ahrendt等对12例胆管癌患者进行随访,发现伴有K-ras基因突变可导致胆管癌术后平均生存时间下降[9]。一项多中心化疗药物二期临床试验研究发现,K-ras基因突变是埃罗替尼(Erlotinib)对终末期胆管癌疗效的影响因素之一[30]。
细胞凋亡即细胞的程序性死亡,是多基因精细调控的过程,已知参与细胞凋亡的基因有Bcl-2家族、Caspase家族等。以Bcl-2蛋白家族为例,该蛋白定位于不同类型细胞的线粒体、内质网或核膜上,既有抗凋亡作用的亚群,如Bcl-2、Bcl-w和Bcl-x,又有促凋亡作用的亚群,如Bax、Bak和BAD[31]。逃避凋亡是肿瘤细胞的重要特征之一,与胆管癌发生密切相关的Bcl-2蛋白家族成员包括Bcl-2和Bax。Romani等[32]对22例肝内胆管癌标本Bax蛋白和乳腺丝抑蛋白(Maspin)进行免疫组织化学染色,并对Maspin进行半定量测量,发现两者变化水平具有高度相关性,从而进一步证实Maspin通过调节Bax蛋白水平调控凋亡,同时,Maspin表达水平与肿瘤大小、肿瘤浸润深度及血管浸润情况呈负相关。Zhao等[33]对35例肝门部胆管癌手术切除标本及20例正常对照组标本进行免疫组织化学染色后发现,Bax在癌组织中蛋白表达水平显著高于正常组织,且差异有统计学意义。Boueroy等[34]发现,在胆管癌细胞系(KKU-214)中,阿司匹林通过诱导肿瘤抑制蛋白P53的表达并抑制抗凋亡蛋白Bcl-2的表达实现对胆管癌细胞的抑制作用。其他药物,如虫草素[35]、表焙儿茶素[36]等亦可通过调节Bcl-2家族蛋白水平起到抑制胆管癌细胞的作用。Sydor等[37]报道,Polo样激酶抑制剂BI6727与顺铂联用时,可增强后者对胆管癌细胞的毒性,其作用原理是通过降低Bcl-2蛋白水平来促进细胞凋亡。在吉西他滨耐药的胆管癌细胞系中,运用膜联蛋白/碘化丙啶染色可观测到Bcl-2的上调及Bax下调[38]。
周期蛋白依赖激酶(cyclin-dependent kinase,CDK)是一套与细胞周期相对应的Ser/Thr激酶系统。各种CDK根据细胞周期交替变化并使底物磷酸化,从而调控细胞周期[39]。周期蛋白依赖激酶抑制因子(cyclin-dependent kinase inhibitor,CKI)包 括INK家 族(如P16INK4a、P18INK4c)和Cip/Kip家 族,CKI通过抑制CDK作用于相应的蛋白底物实现对细胞周期的调控。以P16INK4a/Rb为例,P16INK4a通过抑制CDK4-6激酶,从而使视网膜母细胞瘤抑制蛋白(Bb)处于非磷酸化或低磷酸化形式,抑制细胞从G1期到S期的过程,造成生长停滞[40]。P16的缺失可能是肿瘤的发生诱因。研究表明,P16INK4a的失活及细胞核中β-catenin表达与肝门部胆管癌的发生具有相关性[41]。Sasaki和Nakanuma[42]报道,P16INK4a在胆管腺瘤中高表达,而胆管癌中几乎不表达,说明P16INK4a的检测对于早期鉴别良恶性胆管占位具有临床价值。Nakagawa等[43]研究发现P16INK4a是化疗药物DZNep作用靶点,DZNep与吉西他滨联合用药,通过增强P16INK4a的表达,继而抑制胆管癌。
增殖指标Ki-67免疫组织化学染色有助于区分肝内胆管良性和恶性病变[44]。Ki-67免疫组化染色在肝内胆管癌标本中表达率平均值为23%,而在胆道错构瘤、胆管腺瘤等良性肿瘤的表达率仅为1.4%,但Ki-67无法区分高分化或低分化的胆管癌[44]。环氧酶(cyclo-oxygen-ase,COX)在肿瘤发生中的作用日益被关注。其中COX-2可被TNF-α和IL-6等炎性因子上调表达,进而在肿瘤形成的早期阶段发挥作用,而COX-2高表达在胆管癌中提示预后不良[45]。钙黏蛋白是一种钙依赖的细胞黏着糖蛋白,其中E-钙黏蛋白的下调可导致肿瘤的侵袭性增加。与正常上皮细胞相比,癌组织中E-钙黏蛋白表达明显下调[46],而E-钙黏蛋白表达量上调提示预期生存时间延长[45]。
1 Razumilava N, Gores GJ. Cholangiocarcinoma[J]. Lancet, 2014,383(9935): 2168-2179.
2 Tang H, Lu W, Li B, et al. Prognostic significance of neutrophilto-lymphocyte ratio in biliary tract cancers: a systematic review and meta-analysis[J]. Oncotarget, 2017, 8(22): 36857-36868.
3 Li B, Tang H, Zhang A, et al. Prognostic Role of Mucin Antigen MUC4 for Cholangiocarcinoma : A Meta-Analysis[J]. PLoS ONE,2016, 11(6): e0157878.
4 Cai Y, Cheng N, Ye H, et al. The current management of cholangiocarcinoma : A comparison of current guidelines[J].Biosci Trends, 2016, 10(2): 92-102.
5 Wang H, Liu W, Tian M, et al. Coagulopathy associated with poor prognosis in intrahepatic cholangiocarcinoma patients after curative resection[J]. Biosci Trends, 2017, 11(4): 469-474.
6 李会星. 肝门部胆管癌的诊治进展[J]. 解放军医学院学报,2014, 35(1): 98-101.
7 Saha SK, Zhu AX, Fuchs CS, et al. Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise[J]. Oncologist, 2016, 21(5): 594-599.
8 Tang HW, Lu WP, Yang ZY, et al. Significance of incorporation of DNMT1 and HLA-DRα with TNM staging in patients with hepatocellular carcinoma after curative resection[J]. Int J Clin Exp Pathol, 2017, 10(9): 9372-9381.
9 Tang H, Lu W, Yang Z, et al. Risk factors and long-term outcome for postoperative intra-abdominal infection after hepatectomy for hepatocellular carcinoma[J]. Medicine (Baltimore), 2017, 96(17):e6795.
10 邱宝安, 赵文超, 夏念信, 等. 手术部分肝切除与射频消融治疗多发肝细胞癌预后比较[J]. 解放军医学院学报, 2015, 36(3):226-229.
11 West J, Wood H, Logan RF, et al. Trends in the incidence of primary liver and biliary tract cancers in England and Wales 1971-2001[J].Br J Cancer, 2006, 94(11): 1751-1758.
12 中华医学会外科学分会胆道外科学组, 解放军全军肝胆外科专业委员会. 肝门部胆管癌诊断和治疗指南(2013版)[J]. 中华外科杂志, 2013, 51(10): 865-871.
13 Tang H, Lu W, Li B, et al. Influence of surgical margins on overall survival after resection of intrahepatic cholangiocarcinoma[J].Medicine, 2016, 95(35): e4621.
14 Jarnagin WR, Fong Y, DeMatteo RP, et al. Staging, resectability,and outcome in 225 patients with hilar cholangiocarcinoma[J]. Ann Surg, 2001, 234(4): 507-517.
15 吕少诚, 史宪杰, 梁雨荣, 等. 肝门部胆管癌术后伤口感染的相关危险因素分析[J]. 解放军医学院学报, 2015(10): 1014-1016.
16 Feng Z, Hu W, Rajagopal G, et al. The tumor suppressor p53 :cancer and aging[J]. Cell Cycle, 2008, 7(7): 842-847.
17 Meng X, Tackmann NR, Liu S, et al. RPL23 Links Oncogenic RAS Signaling to p53-Mediated Tumor Suppression[J]. Cancer Res,2016, 76(17): 5030-5039.
18 Meng X, Franklin DA, Dong J, et al. MDM2-p53 pathway in hepatocellular carcinoma[J]. Cancer Res, 2014, 74(24):7161-7167.
19 Liu XF, Zhang H, Zhu SG, et al. Correlation of p53 gene mutation and expression of P53 protein in cholangiocarcinoma[J]. World J Gastroenterol, 2006, 12(29): 4706-4709.
20 O'Dell MR, Huang JL, Whitney-Miller CL, et al. Kras(G12D) and p53 mutation cause primary intrahepatic cholangiocarcinoma[J].Cancer Res, 2012, 72(6): 1557-1567.
21 Li H, Zhou ZQ, Yang ZR, et al. MicroRNA-191 acts as a tumor promoter by modulating the TET1-p53 pathway in intrahepatic cholangiocarcinoma[J]. Hepatology, 2017, 66(1): 136-151.
22 Cheng Q, Luo X, Zhang B, et al. Distal bile duct carcinoma:prognostic factors after curative surgery. A series of 112 cases[J].Ann Surg Oncol, 2007, 14(3): 1212-1219.
23 Wakai T, Shirai Y, Sakata J, et al. Alteration of p53-binding protein 1 expression as a risk factor for local recurrence in patients undergoing resection for extrahepatic cholangiocarcinoma[J]. Int J Oncol,2011, 38(5): 1227-1236.
24 Song P, Cai Y, Tang H, et al. The clinical management of hepatocellular carcinoma worldwide: A concise review and comparison of current guidelines from 2001 to 2017[J]. BioScience Trends, 2017, 11(4): 389-398.
25 Roland CL, Starker LF, Kang Y, et al. Loss of DPC4/SMAD4 expression in primary gastrointestinal neuroendocrine tumors is associated with cancer-related death after resection[J]. Surgery,2017, 161(3): 753-759.
26 Lee KT, Chang WT, Wang SN, et al. Expression of DPC4/Smad4 gene in stone-containing intrahepatic bile duct[J]. J Surg Oncol,2006, 94(4): 338-343.
27 彭创, 汤恢焕. 胆管癌的分子生物学进展[J]. 国际病理科学与临床杂志, 2007, 27(2): 119-124.
28 Rodriguez-Viciana P, Tetsu O, Oda K, et al. Cancer targets in the Ras pathway[J]. Cold Spring Harb Symp Quant Biol, 2005, 70 :461-467.
29 Chen TC, Jan YY, Yeh TS. K-ras mutation is strongly associated with perineural invasion and represents an independent prognostic factor of intrahepatic cholangiocarcinoma after hepatectomy[J].Ann Surg Oncol, 2012, 19(Suppl 3): S675-681.
30 Lubner SJ, Mahoney MR, Kolesar JL, et al. Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II Consortium study[J]. J Clin Oncol, 2010, 28(21): 3491-3497.
31 Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins :changing partners in the dance towards death[J]. Cell Death Differ,2018, 25(1): 65-80.
32 Romani AA, Soliani P, Desenzani S, et al. The associated expression of Maspin and Bax proteins as a potential prognostic factor in intrahepatic cholangiocarcinoma[J]. BMC Cancer, 2006, 6 : 255.
33 Zhao W, Zhang B, Guo X, et al. Expression of Ki-67, Bax and p73 in patients with hilar cholangiocarcinoma[J]. Cancer Biomark,2014, 14(4): 197-202.
34 Boueroy P, Aukkanimart R, Boonmars T, et al. Inhibitory Effect of Aspirin on Cholangiocarcinoma Cell[J]. Asian Pac J Cancer Prev,2017, 18(11): 3091-3096.
35 Wang C, Mao Z , Wang L, et al. Cordycepin inhibits cell growth and induces apoptosis in human cholangiocarcinoma[J]. Neoplasma,2017, 64(6): 834-839.
36 Kwak TW, Park SB, Kim HJ, et al. Anticancer activities of epigallocatechin-3-gallate against cholangiocarcinoma cells[J].Onco Targets Ther, 2017, 10 : 137-144.
37 Sydor S, Jafoui S, Wingerter L, et al. Bcl-2 degradation is an additional pro-apoptotic effect of polo-like kinase inhibition in cholangiocarcinoma cells[J]. World J Gastroenterol, 2017, 23(22):4007-4015.
38 Wattanawongdon W, Hahnvajanawong C, Namwat N, et al.Establishment and characterization of gemcitabine-resistant human cholangiocarcinoma cell lines with multidrug resistance and enhanced invasiveness[J]. Int J Oncol, 2015, 47(1): 398-410.
39 郑文婕, 童坦君, 张宗玉. 细胞衰老的重要通路:p16^INK4a/Rb和p19^ARF/p53/p21^Cip1信号途径[J]. 生命的化学, 2002, 22(4): 314-316.
40 He S, Sharpless NE. Senescence in Health and Disease[J]. Cell,2017, 169(6): 1000-1011.
41 Nakanuma Y, Zen Y, Harada K, et al. Tumorigenesis and phenotypic characteristics of mucin-producing bile duct tumors: an immunohistochemical approach[J]. J Hepatobiliary Pancreat Sci,2010, 17(3): 211-222.
42 Sasaki M, Nakanuma Y. Cellular senescence in biliary pathology.Special emphasis on expression of a polycomb group protein EZH2 and a senescent marker p16INK4a in bile ductular tumors and lesions[J]. Histol Histopathol, 2015, 30(3): 267-275.
43 Nakagawa S, Sakamoto Y, Okabe H, et al. Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells[J]. Oncol Rep,2014, 31(2): 983-988.
44 Tsokos CG, Krings G, Yilmaz F, et al. Proliferative index facilitates distinction between benign biliary lesions and intrahepatic cholangiocarcinoma[J]. Hum Pathol, 2016, 57 : 61-67.
45 Jones RP, Bird NT, Smith RA, et al. Prognostic molecular markers in resected extrahepatic biliary tract cancers; a systematic review and meta-analysis of immunohistochemically detected biomarkers[J].Biomark Med, 2015, 9(8): 763-775.
46 Mikami T, Saegusa M, Mitomi H, et al. Significant correlations of E-cadherin, catenin, and CD44 variant form expression with carcinoma cell differentiation and prognosis of extrahepatic bile duct carcinomas[J]. Am J Clin Pathol, 2001, 116(3): 369-376.