丁月芳
【摘要】华罗庚所言“数无形时少直觉,形少数时难入微”形象生动、深刻明了地指出了数形结合思想的价值,也揭示了数形结合思想的本质。我们在研究抽象的“数”时,往往要借助于直观的“形”,利用“数形结合”能使“数”和“形”统一起来,学习数离不开数轴,它反映了新的课程观渗透数形结合思想的必要性和可行性。本文以“数轴”为例阐述数形结合思想在数概念教学中的应用。
【关键词】数轴 概念教学 数感培养
吴亚萍教授把概念教学分为“数概念、形概念、统计概念、度量概念”,其中“数概念”是指整数、小数、分数、平均数等与“数”有密切关系的概念,是小学数学教学的重要组成部分,是学生进一步学习数的运算、与数有关的数学问题的基础,是培养学生数感、符号感的重要载体。学生在研究数学问题时,由数思形、见形思数、数形结合考虑问题是一种常用的思想方法。数形结合不仅是一种数学思想,也是一种很好的教学方法。在我校开展的卷入式校本教研活动中,我们开辟了一个数概念教学之数轴篇,通过实践与研究,得到一些关于数概念教学的启示,下面就从中采撷一些教学案例对如何借助数轴进行数概念教学谈一些粗浅的体会。
一、借助数轴,发展数感培养
数感的培养是数与计算教学领域改革的一个重要理念,学生数感的建立需要一个逐步体验和发展的过程,小学阶段培养数感都是运用“数形结合”,给学生提供丰富的学习素材,形象地感知数的实际意义,使学生在数学学习过程中逐步形成良好的数感。小学生对直尺非常熟悉,学生在认数的学习中,通常以直尺为原型,逐步经历了从“数尺”到“数线”再到“数轴”的过程,把数与“数尺”“数线”“数轴”上的点一一对应起来。
如在教学“负数”后,教师可在数轴上表示出正数和负数的排列顺序。
首先引导学生观察“0”在数轴上的特殊位置,以“0”为分界点,0的右边是正数,从左往右越来越大,0的左边是负数,从右往左越来越小。借助数轴形象地感知数轴上的数从左往右的顺序就是从小到大的顺序,比0大的数是正数,比0小的数是负数,0既不是正数也不是负数,实现对数的知识的整体构建。
俞正强老师在“数感,是如何丰满起来的”一文中指出:在学习“负数”之前,数大多表示“多”与“少”,可在学习负数的过程中,“数”不仅可以表示“多”“少”,更表示状态。这是数感的又一次突破。这种数感的突破,最明显地表现在对“0”的认识上。在这之前,“0”通常表示“没有”,而在负数的认识中,“0”则表示一种可以作为区别的状态,即通常说的“标准”……这种相对性的体验,谓之为数感的培养。
可见,我们在研究抽象的“数”时,往往要借助于直观的“形”,利用“数形结合”使“数”和“形”统一起来,丰富学生对数的形象感知,进一步发展学生的数感。
二、借助数轴,把握概念本质
在日常教学中,许多教师不能把握概念本质,以致学生对数概念的理解和认识浅尝辄止、浮于表面。借助数轴可以紧扣概念的本质,展示概念的形成过程,帮助学生全面理解、准确把握概念的实质。
如在教学《求一个小数的近似数》时,以“1.496保留两位小数”为例,应用“四舍五入法”求小数的近似数并不难,学生真正难理解的是“近似数1.50”末尾的“0”能不能去掉,为什么?对于大多数学生而言,一般只能从小数的外在形式进行解释:近似数1.50末尾的“0”不能去掉,去掉了就相当于保留一位小数。要真正从小数的内在本质理解“近似数1.50和1.5精确度不同”这个问题,就需要应用“数形结合”思想来帮助学生透彻理解其中的原理,而“数轴”自然就是本课的“主角”。
下面是我利用“小数轴”启发学生“大思考”的教学片段。
先给学生提供标有1.4、1.5、1.6的数轴,并提出研究要求:在1.4~1.6之间可以分别找到几个两位小数?能得到近似数为1.5的两位小数又有哪些?再观察一下这些小数在数轴上的位置有什么特点?可以独立探究,也可以小组合作。
经过讨论,呈现数轴(1):
在学生充分发表自己的观点后,我利用多媒体把1.45~1.54这个区域刷红,引导学生仔细观察这个红色区域:以1.5为起点,从左往右依次数出4个两位小数:1.51、1.52、1.53、1.54,它们的百分位上都没满5,在数轴上的位置更接近1.5,所以要忽略不计百分位上的数,取1.5,也就是“四舍”。再以1.5为起点,从右往左也可以依次数出4个更接近1.5的两位小数:1.49、1.48、1.47、1.46,它们的百分位上都满了5,要向十分位上的数进一,也就是“五入”。至于1.45,其实它刚好在1.4~1.5的正中间,离1.4和1.5的距离是相同的,那就鼓励鼓励它吧,让它向大数靠拢。这样,就产生了“四舍五入”的方法。
此时,学生们不仅对“四舍五入”法有了更深刻的理解,同时对得到近似数1.5的两位小数的范围有了一个直观形象的感知。于是,我继续抛出问题:“按照刚才的研究方法,你能在数轴上找一找精确到百分位可以得到近似数1.50的三位小数有哪些,这些小数在数轴上的位置又有什么特点呢?”
经过讨论,呈现数轴(2):
从数轴上可以看出近似数是1.50的三位小数在1.495~1.504之间。随即利用媒体把数轴(1)和数轴(2)合二为一,引导学生进行对比,你有什么发現?