摘 要:在教学中,我不仅重视知识形成过程,还十分重视发掘在数学知识的发生、形成和发展过程中所蕴藏的重要思想方法。不管是数学概念的建立,数学规律的发现,还是数学问题的解决,乃至整个“数学大厦”的构建,核心问题在于数学思想方法的培养和建立。“数学科学”之所以从自然科学领域中分离出来,成为现代科学的十大部门之一,首先不是因为数学知识本身,而是因为数学思想与数学意识的重要作用。在一个人的一生中,最有用的不仅是数学知识,更重要的是数学的思想和数学的意识。因此我们应当在小学数学教學中不失时机地进行思想方法的渗透。
关键词:数学思想;数学意识;渗透方法
问题是数学的心脏,方法是数学的行为,思想是数学的灵魂。在教学中,我不仅重视知识形成过程,还十分重视发掘在数学知识的发生、形成和发展过程中所蕴藏的重要思想方法。在一个人的一生中,最有用的不仅是数学知识,更重要的是数学的思想和数学的意识。因此我们应当在小学数学教学中不失时机地进行思想方法的渗透。
一、“单位”思想的渗透
数学中,不管是“数”还是“量”的计算都得益于“单位”思想。
1.重视渗透“1”是自然数的单位的思想
(1)在具体认识10以内各数之前,我就非常重视“1”与“许多”的教学。教师出示一篮子苹果,说篮子中有“许多”苹果。并要学生将篮子中的苹果一个一个地分别放到每个小盘中,那么,每个小盘中就都是“1”个苹果。再把每个盘子里一个一个苹果集中在篮子里,篮子里就是“许多”苹果。在上述演示过程中,让学生体验到“许多”和“1”的关系:“许多”由一个一个的“1”组成;“许多”可以分成一个一个的“1”。“许多”是对“1”而言的。
(2)在10以内的数的认识阶段,注意讲清每个数与“1”的关系,强调若干个“1”可以合成这个数。例如,教数“7”时,我首先不是出示“6”,然后再加“1”,向学生说明这就是“7”;而是一次出示七个物体,让它直接与一个物体比较,让学生从中领悟到“7”表示七个“1”;其次,才是揭示“7”与前面所认识的数,特别是与它前面最靠近的数“6”的关系。
(3)在教学百以内、万以内数的认识时,仍然强调“1”是自然数的单位,而注意把它与计数单位“十”“百”“千”“万”等区别开来。
2.在量的计量教学中,重视“计量单位”的引进
量的计量教学,首要问题是要合理引入计量单位。例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。
二、化归思想方法的渗透
化归思想是小学数学中重要的思想方法之一。所谓“化归”可理解为“转化”与“归结”的意思。我觉得:作为小学数学教师,如果注意并正确运用“化归思想”进行教学,可以促使学生把握事物的发展进程,对事物内部结构、纵横关系、数量特征等有较深刻的认识。下面举2例。
1四则运算“巧用定律”
有不少四则运算题,虽然可以根据常规运算顺序逐步算出正确结果,但往往因为数据庞杂,计算十分繁琐。如果能利用恒等变换,使题目的结构适合某种“模式”,运用已学过的定律、性质进行解答,便能一蹴而就,易如反掌。
例如:计算1.25×96×25
将96分解成8×4×3,再利用乘法交换律、结合律计算就显得非常方便。
1.25×96×25=1.25×8×4×3×25
=(1.25×8)(25×4)×3
=10×100×3
=3000
2.数学语言“互换表达”
数学语言从形态上说,主要有三种:普通语言、图形语言和符号语言。例如“圆锥的体积”用符号语言表示为V=1/3Sh,用普通语言表示为“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。课本上还配有图形语言。由于三种形式的数学语言各有其特点,图形语言形象直观,符号语言简练准确,普通语言通俗易懂。小学阶段由于学生思维还处于形象思维向抽象思维的过渡阶段,课本上以图形语言和普通语言为主,但不少地方也出现了符号语言,所以在数学教学中,加强各种数学语言的化归,可以加深对数学概念和命题的理解与记忆,帮助学生审题和探求解题思路。
三、符号化思想的渗透
数学符号在数学中占有相当重要的地位。英国著名哲学家、数学家罗素也说过,什么是数学?数学就是符号加逻辑。面对一个普通的数学公式:S=πr2,任何具有小学文化程度的人,无论他来自地球的哪一方都知道它表示的意思。数学的符号化语言能够不分国家和种族到处通用。世界交流需要数学符号化语言。
符号化思想的实质有两条:一是要有尽量把实际问题用数学符号来表达的意识;二是要充分把握每个数学符号所蕴含的丰富内涵和实际意义。因此,不管是元素符号、运算符号、关系符号、结合符号等,我都注意到以上两点。例如在讲解数字符号“5”时,一方面强调与一个人一只手的手指“同样多”的物体个数,都可以用符号“5”表示。同时还让小学生看着“5”说出它的内涵。如说出5个人,5支笔,5辆小汽车等。对小学课本中的数学公式、运算定律等,我除了尽量让学生用符号表示外,还要求他们完整地说出每个公式和运算定律的意义。
把客观现实中存在的事物和现象以及它们之间的相互关系抽象概括为数学符号和公式,对小学生来说不是一件很容易的事。这是因为符号化有一个从具体——表象——抽象——符号化的过程。为此,必须逐步培养小学生的抽象概括能力。例如在应用题教学中,我时常对学生进行从复杂的情节、关系叙述中,浓缩、提炼数量关系的训练。这不仅有利于问题的解决,而且,相应的能力也得到了培养和提高。
在小学阶段,课本上现有的数字符号化语言不是很多,对小学生掌握多少符号化语言也不应有过高要求。但在日常教学中,我们数学教师应该有这样一种强烈的意识:重视符号化思想的渗透;重视小学生抽象概括能力的培养。
因此,我们在教学中,不管是数学概念的建立,数学规律的发现,还是数学问题的解决,乃至整个“数学大厦”的构建,核心问题在于数学思想方法的培养和建立。“数学科学”之所以从自然科学领域中分离出来,成为现代科学的十大部门之一,首先不是因为数学知识本身,而是因为数学思想与数学意识的重要作用。
作者简介:
杨宏伟,男,回族,大学专科,一级教师。