邱久纯,刘 彤,李广平
(天津市心血管病离子与分子机能重点实验室,天津医科大学第二医院心脏科,天津心脏病学研究所,天津300211)
糖尿病NADPH氧化酶相关的氧化应激与房颤
邱久纯,刘 彤*,李广平*
(天津市心血管病离子与分子机能重点实验室,天津医科大学第二医院心脏科,天津心脏病学研究所,天津300211)
心房颤动 (房颤)是我们目前临床工作中一种非常常见的心律失常,人群的发病率相对较高,约为1%-2%[1]。房颤状态下心房组织的氧化应激增强,促进心房组织发生结构性重构和电学重构,继而对房颤的产生和持续起着一定作用[2]。糖尿病是房颤发生的独立性危险因素之一,荟萃分析显示,糖尿病患者并发房颤的几率升高约34%[3]。然而,糖尿病引起房颤发生的具体机制至今仍然不是十分清楚,糖尿病时机体会产生大量的活性氧(ROS),ROS参与了许多病理生理过程[4],可能是两者之间的关键环节。
氧化应激是指机体组织的促氧化剂与抗氧化剂的平衡打破,主要表现为过多的ROS生成,促氧化剂占了主导的作用,出现失衡状态。过多的ROS产生毒性,可以直接引起机体心肌细胞DNA的异常表达、损伤、凋亡,以及心肌组织肥厚纤维化。心血管组织中ROS的主要来源为血管平滑肌细胞、内皮细胞以及心肌细胞内的烟酰胺腺嘌呤二核苷磷酸(NADPH)氧化酶[5],此外,失偶联的一氧化氮合成酶(eNOS)、线粒体、黄嘌呤氧化酶等也在组织ROS的产生中发挥一定作用。
2.1 房颤状态下氧化应激产物明显增加
有研究显示,氧化应激在房颤的产生和持续过程中发挥着比较重要的作用。Neuman等[6]研究表明房颤和氧化应激标志物水平之间有显著的相关性,氧化型谷胱甘肽和还原型谷胱甘肽的比率、氧化型半胱氨酸和还原型半胱氨酸的比率显著增加。一些研究证实房颤患者心肌组织中的ROS水平显著增加,具体表现为H2O2和过氧化物增加,与房颤的发生和发展密切相关[2,7-9]。
2.2 房颤时NADPH氧化酶(NOX)途径的氧化应激
Kim等[2]证明,NOX是心房肌细胞内ROS的主要生产者,房颤患者的右心耳细胞和组织匀浆中NOX活性出现功能性上调。Dudley 等[10]研究证实,在心房高速起搏成功诱发房颤后1周,测量猪左心房或左心耳组织的氧化应激相关指标,与对照组相比,持续性房颤猪的心房肌组织内氧化应激产物浓度显著上升,并且是依赖NOX的活化程度。有研究发现[11],和慢性房颤相比,阵发性和持续性房颤患者的心房肌组织内NOX的同工酶--NOX2活性明显上调,说明NOX2是房颤的触发因素之一。Kim等[8]进一步研究评估了NOX是否在房颤的产生机理中起关键作用。他们发现,在170例接受冠状动脉搭桥手术的患者中,同保持窦性心律的患者相比,房颤患者右心耳组织中NOX来源的ROS明显增加。有研究显示[9],同对照组相比,房颤患者左心耳细胞的NOX4过度表达,并伴随H2O2产物的增加,活化NOX产生的ROS能够促进房颤患者的心房发生结构性重构和电学重构。
3.1 NF-κB信号传导通路在心房结构重构中的作用
糖尿病时,过多的ROS能进一步修饰糖和蛋白质,使二者结合,产生晚期糖基化终末产物(AGEs)。AGEs和细胞膜上的受体的结合会使NF-κB激活[12]。在糖尿病的环境下,升高的的血糖水平和低密度脂蛋白/极低密度脂蛋白比值(LDL/VLDL)也能刺激心肌细胞NF-κB激活[13]。在糖尿病动物的心肌组织内,生长因子(TGF-β、血管紧张素Ⅱ)和血管肽的释放也使NF-κB激活[14]。
作为转录因子,激活的NF-κB会进入到细胞核并直接调控其目标基因的表达,包括TGF-β1。这些基因的表达造成持久的炎症,引起细胞外基质的积累和纤连蛋白过多生产,引起纤维化。我们近期研究显示[15],与对照组相比,糖尿病家兔的心房组织NF-κB P65和TGF-β1蛋白表达明显的增加,心房间质出现明显纤维化,且房颤诱发率明显增加。
3.2 MAPK信号传导通路在心房结构重构时的作用
有研究报道,在链脲霉素诱发的糖尿病猪的模型中,糖尿病增加了冠状动脉细胞NOX的活性、氧化应激和炎症反应。AGEs激活丝裂原蛋白激酶(MAPK)信号传导通路,诱导ERK1/2、JNK进行磷酸化形式的表达,并通过氧化还原方式在冠状动脉中膜外膜增加一些炎症基因的表达[16]。在灌注的糖尿病大鼠心脏,p38-MAPK和JNK被氧化应激(H2O2)激活[17]。在糖尿病状态下ERK被激活的可能机制为:当高糖或糖尿病时,某些组织中进行糖酵解的产物磷酸二羟丙酮浓度增加,继而被转变成DAG和磷酸甘油,DAG水平缓慢增加,激活了PKC。在平滑肌细胞内DAG能够使PKCδ和PKC β等传统的亚型激活,PKC βII则被当做是高糖诱导的Raf/MEK/ERK信号传导通路活化的关键媒介[18]。研究认为[19],过多的ROS产物在心肌组织肥厚的过程中发挥了第二信使的作用,ROS能够激活细胞凋亡信号调节激酶1(ASK1),继而进一步激活ASK1下游的MAPK信号传导通路(包括p38、MAPK和JNK),使心肌的肥厚相关基因表达升高。
3.3 TGF-β在心房结构重构时的作用
在2型糖尿病动物模型中,TGF-β能够诱导结缔组织生长因子(CTGF)的产生,CTGF继而促进血管生成和细胞周围基质(ECM)的产生[20];还增加纤维连接蛋白、蛋白多糖和胶原等细胞周围基质蛋白的生成;下调蛋白酶活性或表达,如胶原酶(MMPs)和纤维蛋白溶酶原激活剂,降低基质蛋白的降解;增加纤溶酶原激活物抑制物-1和组织金属蛋白酶抑制剂(TIMPs)的合成,促进心肌间质纤维化的进展。
房颤的电重构与细胞内钙超载有关[21],氧化应激介导的线粒体DNA损伤可以通过调节钙调控蛋白或通道,导致心肌细胞内的钙离子浓度升高,出现超载,继而引起心房组织的电重构。Berecewicz 和 Horackova[22]在大鼠和豚鼠的心室肌细胞的研究中证实了ROS的致心律失常作用。这些研究显示H2O2能延长心肌细胞动作电位时程(APD),并能通过早后电位(EAD)和晚后电位(DAD)机制诱发触发活动。H2O2介导的EAD形成的离子机制是在单细胞上进行研究的,发现H2O2增加晚钠电流的量级(late INa)[23],激活L型钙通道及Na+/Ca2+交换并显著地降低肌浆网(SR)对钙的摄取,增加肌浆网的Ca2+释放通道(RyR)开放频率[24]。结合单细胞微电极记录和高分辨率光学标测,已经在整体心脏上证实,EAD介导的触发活动是房颤的一个诱因[25]。
5.1 维生素C
Mihm等[26]发现在快速起搏犬心房的模型中,在起搏24-48小时,与对照组相比,使用维生素C进行抗氧化能够使缩短的有效不应期适当延长,说明氧化应激反应可能参与了早期的心房电学重构,和房颤的产生及维持相关联。研究显示维生素C和N-乙酰半胱氨酸(NAC)具有一定的抗氧化应激作用,能够预防心脏外科手术后发生房颤,与其抗炎抗氧化作用有关[27]。
可以通过抗氧化剂干预试验来研究氧化应激是否和持续性AF有关:给予动物清除氧自由基的抗氧化剂抗坏血酸,单独或结合维他命E[28]。两个研究的结果不同,Carnes等[29]显示抗氧化治疗减少了心房起搏引起的ERP缩短,而Shiroshita-Takeshita等[28]发现无论单独应用抗坏血酸还是结合维生素E在减少心房兴奋性或房颤易感性方面都没有效果。主要原因可能为,抗坏血酸口服时是一种弱抗氧化剂,但用于静脉注射时是一个强的抗氧化剂。在几乎所有给予的抗坏血酸的实验中都是口服的,这与以前报告的抗坏血酸预防AF作用的不确定性是相一致的。
5.2 夹竹桃麻素
夹竹桃麻素是一种植物来源的提取物,作用是阻碍p47phox亚基与膜复合体的组装,是NOX的可逆抑制剂[30]。夹竹桃麻素一旦抑制NOX的活性,就可以在上游抑制ROS的生成。
夹竹桃麻素可以降低心房肌细胞快速电刺激后产生的ROS,降低心房肌细胞介导的心房纤维母细胞TGF-β1和结缔组织生长因子的表达[31]。有研究显示[32],在快速心房起搏的家兔模型中,夹竹桃麻素能够减低心房发生电重构的进展,降低房颤的诱发率和持续时间。有研究证实在心肌梗死后心力衰竭的兔模型中夹竹桃麻素能够改善心室肥大和纤维化[33]。有研究认为夹竹桃麻素可能用于房颤的预防和治疗[34]。Parket等[35]研究发现,注入醛固酮后会使NADPH氧化酶活性增加,心脏肥大和心脏血管周围的纤维化,而这些反应能被夹竹桃麻素减低。
5.3 其他抗氧化剂
曲美他嗪、普罗布考和他汀类药物都具有抗氧化应激的特性,可以深入研究它们在房颤治疗中的价值。
事实上,高活性的活性氧分子和相邻的蛋白质/脂质之间的反应是如此迅速,以至于直接的ROS靶向疗法(如维生素C和E)令人失望。因此,下游抑制ROS可能是无用的。因而,在ROS产生之前的上游抗氧化治疗可能是更有效[34]。因此通过抑制NOX等酶的活性,在上游抑制ROS的生成可能是预防糖尿病时房颤产生的新方法。
[1]Wann LS,Curtis AB,Ellenbogen KA,et al.2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (update on Dabigatran):a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines[J].Circulation,2011,123:1144.
[2]Kim YM,Guzik TJ,Zhang YH,et al.A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation[J].Circulation research,2005,97:629.
[3]Huxley RR,Filion KB,Konety S,et al.Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation[J].The American journal of cardiology,2011,108:56.
[4]Pitocco D,Zaccardi F,Di Stasio E,et al.Oxidative stress,nitric oxide,and diabetes[J].RDS,2010,7:15.
[5]Seddon M,Looi YH,Shah AM.Oxidative stress and redox signalling in cardiac hypertrophy and heart failure[J].Heart,2007,93:903.
[6]Neuman RB,Bloom HL,Shukrullah I,et al.Oxidative stress markers are associated with persistent atrial fibrillation[J].Clinical chemistry,2007,53:165.
[7]Chang JP,Chen MC,Liu WH,et al.Atrial myocardial nox2 containing NADPH oxidase activity contribution to oxidative stress in mitral regurgitation:potential mechanism for atrial remodeling[J].Cardiovascular Pathology,2011,20:99.
[8]Kim YM,Kattach H,Ratnatunga C,et al.Association of atrial nicotinamide adenine dinucleotide phosphate oxidase activity with the development of atrial fibrillation after cardiac surgery[J].Journal of the American College of Cardiology,2008,51:68.
[9]Zhang J,Youn JY,Kim AY,et al.NOX4-Dependent Hydrogen Peroxide Overproduction in Human Atrial Fibrillation and HL-1 Atrial Cells:Relationship to Hypertension[J].Frontiers in physiology,2012,3:140.
[10]Dudley SC,Hoch NE,McCann LA,et al.Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage:role of the NADPH and xanthine oxidases[J].Circulation,2005,112:266.
[11]Cangemi R,Celestini A,Calvieri C,et al.Different behaviour of NOX2 activation in patients with paroxysmal/persistent or permanent atrial fibrillation[J].Heart,2012,98:1063.
[12]Zhang Q,Li G,Liu T.Receptor for advanced glycation end products (RAGE):novel biomarker and therapeutic target for atrial fibrillation[J].International journal of cardiology,2013,168:4802.
[13]Min W,Bin ZW,Quan ZB,et al.The signal transduction pathway of PKC/NF-kappa B/c-fos may be involved in the influence of high glucose on the cardiomyocytes of neonatal rats[J].Cardiovascular diabetology,2009,8:8.
[14]Chen S,Khan ZA,Cukiernik M,et al.Differential activation of NF-kappa B and AP-1 in increased fibronectin synthesis in target organs of diabetic complications[J].American journal of physiology Endocrinology and metabolism,2003,284:E1089.
[15]Fu H,Li G,Liu C,et al.Probucol prevents atrial remodeling by inhibiting oxidative stress and TNF-alpha/NF-kappaB/TGF-beta signal transduction pathway in alloxan-induced diabetic rabbits[J].Journal of cardiovascular electrophysiology,2015,26:211.
[16]Zhang L,Zalewski A,Liu Y,et al.Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries[J].Circulation,2003,108:472.
[17]Clerk A,Fuller SJ,Michael A,Sugden PH.Stimulation of "stress-regulated" mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses[J].The Journal of biological chemistry,1998,273:7228.
[18]Cheng YC,Chen LM,Chang MH,et al.Lipopolysaccharide upregulates uPA,MMP-2 and MMP-9 via ERK1/2 signaling in H9c2 cardiomyoblast cells[J].Molecular and cellular biochemistry,2009,325:15.
[19]Tsujimoto I,Hikoso S,Yamaguchi O,et al.The antioxidant edaravone attenuates pressure overload-induced left ventricular hypertrophy[J].Hypertension,2005,45:921.
[20]Jesmin S,Sakuma I,Hattori Y,et al.Long-acting calcium channel blocker benidipine suppresses expression of angiogenic growth factors and prevents cardiac remodelling in a Type II diabetic rat model[J].Diabetologia,2002,45:402.
[21]Lai LP,Su MJ,Lin JL,et al.Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca2+-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor,calsequestrin and phospholamban:an insight into the mechanism of atrial electrical remodeling[J].Journal of the American College of Cardiology,1999,33:1231.
[22]Beresewicz A,Horackova M.Alterations in electrical and contractile behavior of isolated cardiomyocytes by hydrogen peroxide:possible ionic mechanisms[J].Journal of molecular and cellular cardiology,1991,23:899.
[23]Song Y,Shryock JC,Wagner S et al.Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction[J].The Journal of pharmacology and experimental therapeutics,2006,318:214.
[24]Anzai K,Ogawa K,Kuniyasu A et al.Effects of hydroxyl radical and sulfhydryl reagents on the open probability of the purified cardiac ryanodine receptor channel incorporated into planar lipid bilayers[J].Biochemical and biophysical research communications,1998,249:938.
[25]Ono N,Hayashi H,Kawase A,et al.Spontaneous atrial fibrillation initiated by triggered activity near the pulmonary veins in aged rats subjected to glycolytic inhibition[J].American journal of physiology Heart and circulatory physiology,2007,292:H639.
[26]Mihm MJ,Yu F,Carnes CA,et al.Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation[J].Circulation,2001,104:174.
[27]Rodrigo R,Vinay J,Castillo R,et al.Use of vitamins C and E as a prophylactic therapy to prevent postoperative atrial fibrillation[J].International journal of cardiology,2010,138:221.
[28]Shiroshita-Takeshita A,Schram G,Lavoie J,et al.Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs[J].Circulation,2004,110:2313.
[29]Carnes CA,Chung MK,Nakayama T,et al.Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation[J].Circulation research,2001,89:E32.
[30]Meyer JW,Holland JA,Ziegler LM,et al.Identification of a functional leukocyte-type NADPH oxidase in human endothelial cells:a potential atherogenic source of reactive oxygen species[J].Endothelium,1999,7:11.
[31]Tsai CT,Tseng CD,Hwang JJ,et al.Tachycardia of atrial myocytes induces collagen expression in atrial fibroblasts through transforming growth factor beta1[J].Cardiovascular research,2011,89:805.
[32]Zhang DX,Ren K,Guan Y,et al.Protective effects of apocynin on atrial electrical remodeling and oxidative stress in a rabbit rapid atrial pacing model[J].The Chinese journal of physiology,2014,57:76.
[33]Qin F,Simeone M,Patel R.Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction[J].Free radical biology & medicine,2007,43:271.
[34]Sovari AA,Morita N,Karagueuzian HS.Apocynin:a potent NADPH oxidase inhibitor for the management of atrial fibrillation[J].Communications in Free Radical Research,2008,13:242.
[35]Park YM,Park MY,Suh YL,et al.NAD(P)H oxidase inhibitor prevents blood pressure elevation and cardiovascular hypertrophy in aldosterone-infused rats[J].Biochemical and biophysical research communications,2004,313:812.
国家自然科学基金项目资助(81270245,81570298)
1007-4287(2017)04-0742-04
2016-08-15)
*通讯作者