何强,张雅静,夏大胜,卢成志
光学相干断层成像在冠心病支架置入术后的应用
何强1,张雅静1,夏大胜1,卢成志1
光学相干断层成像技术(OCT)在冠心病介入治疗中的应用已越来越广泛,它与血管内超声(IVUS)相比,具有更高的分辨率,使其能够对支架置入后支架小梁的贴壁情况及新生内皮组织进行更好的观察和评估。观察发现,新生内膜的动脉粥样硬化不仅导致支架术后再狭窄,并且OCT观察到新生的动脉硬化不同的形态学特征可以对应患者在临床上出现的稳定型心绞痛和急性冠脉综合征,有助于减少支架置入治疗的并发症,促进冠心病介入治疗的发展。
金属裸支架(BMS)的应用减少了介入术后血管的急性闭塞,较球囊扩张有更好的临床预后,但较高的支架内再狭窄(ISR)率成为介入医生需面对的问题[1,2]。药物洗脱支架(DES)显著减少支架再狭窄率,可改善临床预后[3,4]。因此由金属支架框架、药物聚合物载体和抗增殖药物组合成的DES成为冠心病介入治疗的主流。但近年注册研究显示DES晚期支架内血栓发生率较高,且逐年增长[5],其主要原因为支架小梁内皮化不完全[6],因此,我们通过光学相干断层成像技术用观察支架小梁的内皮化情况,并做一综述。
血管内超声(IVUS)虽可观察到冠状动脉病变的组织学特质和支架置入后的形态学特征,但由于分辨率不足,不能对支架表面的新生内皮组织精确评估,只有当新生内皮组织超过支架横截面积(CSA)的14.7%时,IVUS才能识别出支架表面新生的内皮组织[7]。OCT凭借10~20 μm的分辨率可清楚观察到支架术后小梁表面的新生内皮组织,并精确测出支架表面10~20 μm的新生组织[8]。
2.1 对支架贴壁不良的观察 IVUS定义的支架贴壁不良为至少1个支架小梁与内膜表面分离或在支架小梁后有血流出现[9]。OCT对支架贴壁不良的定义为支架小梁表面的高信号点到内膜的距离大于支架厚度+轴向分辨率[10]。不同支架贴壁不良的标准不同,如TAXUS支架≥130 μm[11]、Endeavor和Resolute支架≥110 μm[12]、XienceV支架≥100 μm[13]、biolimus洗脱可吸收药物涂层支架≥130 μm[14]。我们发现并不是所有OCT定义的支架贴壁不良都为不良心血管事件,随时间延长,一部分贴壁不良的支架小梁是可以被新生内皮组织完全覆盖的[15]。Kawamori等研究发现距血管内膜距离≤260 μm的小梁能够内皮化[16],但过程缓慢,Gutiérrez-Chico等研究证实这些小梁完全内皮化至少需要13个月[17]。虽然轻度贴壁不良的小梁内皮化更缓慢,但其内皮化率与贴壁良好的小梁并无区别[18]。另外贴壁不良的小梁能否内皮化还与支架
类型有关,新一代DES的内皮化率优于第一代[19]。
2.2 对支架小梁内皮化的观察 支架置入后的内皮化可分为3个阶段:①炎症阶段(血小板聚集和炎症细胞浸润);②肉芽阶段(内皮细胞、成纤维细胞和平滑肌细胞的迁移和增殖);③基质重塑阶段(成纤维细胞和平滑肌细胞释放蛋白多糖)[20]。一些OCT的研究观察了DES置入人体后支架小梁的内皮化过程。由于DES的抗增殖药物抑制了平滑肌细胞的迁移和增殖,使DES在体外及体内都不能迅速的完全内皮化[21]。Kim研究指出DES的内皮化过程缓慢且不均匀,甚至若干年后仍不能完全内皮化[22]。Guagliumi等研究指出无内皮覆盖的支架小梁比率>30%时,发生支架内血栓的比值比(OR)为9.0(95%Cl为3.5~22),含裸露小梁的支架段长度与支架内血栓密切相关[23],因此DES置入后延迟的内皮修复与晚期支架内血栓相关,应用OCT观察支架小梁内皮化情况可作为临床预测不良心血管事件的可靠指标,Won等研究建议超过5.9%的支架小梁无内皮覆盖可作为DES远期不良事件的预测指标[24]。
3.1 对新生内膜组织特征的观察 一项OCT的研究发现,支架内再狭窄段(ISR)新生的内膜组织图像可表现为均质、非均质和分层的特征[25]。其中非均质的ISR组织特征包括纤维蛋白累积、过度炎症(过敏反应)、细胞外基质或支架内新生斑块、平滑肌细胞等,OCT上可观察到多种多样的信号强度及向后衰减的特征。多样化的ISR特征说明内皮修复过程不稳定,与临床不良事件相关,Lee等研究指出OCT观察到的非均质或分层样的内膜增生在ISR段出现的频率,显著高于非ISR段[26]。但新生内膜不同的影像学特点究竟有何意义,尚需进一步研究。
3.2 对新生内膜粥样硬化的观察 BMS和DES植入后新生内膜组织都可出现粥样硬化样改变[27,28],组织学研究发现DES术后更易出现新生内膜组织的粥样硬化[27]。OCT研究中也有同样发现[28],并指出不完全内皮化的小梁部位更易出现新生内膜粥样硬化并加速其粥样硬化的进程。DES术后新生内膜的动脉硬化样改变会导致ISR[29]。Kimura等研究显示BMS置入后早期出现管腔直径变窄,在6个月~3年的时间,狭窄会逐渐减轻[30],而DES置入后新生内膜组织的动脉硬化进程将持续至术后5年[31]。Habara研究发现相对于1年内的ISR部位,薄纤维帽的粥样瘤(TCFA)更多出现于超过3年的ISR部位[29]。Kim等研究证实DES置入后新生内皮的粥样硬化性改变在9个月~2年间逐渐进展,其临床表现也由稳定型心绞痛转变为不稳定型心绞痛,最终为急性心肌梗死[21]。相对于稳定型心绞痛患者,不稳定型心绞痛患者发生OCT定义的TCFA、内膜破裂和血栓的发生率显著增加[32]。除此之外,Ko等研究在极晚期支架内血栓的患者中观察到富含脂质粥样硬化改变组织的破裂[33]。Yonetsu研究指出新生内膜的动脉硬化样改变与冠状动脉粥样硬化疾病危险因素有关[34],但这种新生内膜的动脉硬化样改变的机制目前尚不明确,需今后进一步探索。
尽管OCT是一个非常先进的血管内成像工具,但仍有很多的局限性。OCT的垂直穿透力仅有2 mm,因其穿透力较浅不能观察到类似于富含脂质的斑块或红血栓等图像后的组织影像。另外OCT系统目前还不能区分纤维蛋白累积、过度炎症反应、丰富的细胞外基质或新生内膜的动脉硬化,这些结构在OCT图像中均表现为信号过快衰减的暗区,而无法进行鉴别[35]。
三维的OCT重建技术使医生能够观察到二维图像不能观察到的平面[36],从而有利于介入治疗方案的选择和支架术后疗效评估。组织特征的识别对OCT来说仍是难点,因为很多组织成分在OCT图像上表现的非常接近。许多新的OCT技术正尝试着扩大不同组织成份的信号差别。偏振敏感OCT技术是目前最新的技术,它可以测量反向散射光线的偏振特点[37],从而表现出不同的组织信号。细胞的靶向标记技术如免疫荧光技术可用来标记新生内皮组织特征,这些都有可能整合入混合型OCT系统,应用于未来的发展。
许多OCT研究应用高分辨率的OCT对DES置入体内后情况进行评估。OCT图像发现的裸露支架小梁或新生内皮的粥样硬化可用来预防或预测不良心血管事件。期待先进的OCT技术能够提供更加详细的冠状动脉支架信息,以促进冠心病介入治疗的发展。
[1] Fischman DL,Leon MB,Baim DS,et al. Stent Restenosis Study Investigators. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease[J]. N Engl J Med,1994,331:496-501.
[2] Serruys PW,de Jaegere P,Kiemeneij F,et al. Benestent Study Group. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease[J]. N Engl J Med,1994,331:489-95.
[3] Stone GW,Ellis SG,Cox DA,et al. A polymer-based, paclitaxeleluting stent in patients with coronary artery disease[J]. N Engl J Med,2004,350:221-31.
[4] Moses JW,Leon MB,Popma JJ,et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery[J]. N Engl J Med,2003,349:1315-23.
[5] Wenaweser P,Daemen J,Zwahlen M,et al. Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study[J]. J Am CollCardiol, 2008,52:1134-40.
[6] Daemen J,Wenaweser P,Tsuchida K,et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice:data from a large two-institutional cohort study[J]. Lancet,2007,369:667-78.
[7] Kwon SW,Kim BK,Kim TH,et al. Qualitative assessment of neointimal tissue after drug-eluting stent implantation:comparison between followup optical coherence tomography and intravascular ultrasound[J]. Am Heart J,2011,161:367-72.
[8] Suzuki Y,Ikeno F,Koizumi T,et al. In vivo comparison between optical coherence tomography and intravascular ultrasound for detecting small degrees of in-stent neointima after stent implantation[J]. JACC Cardiov ascInterv,2008,1:168-73.
[9] Hong MK,Mintz GS,Lee CW,et al. Late stent malapposition after drugeluting stent implantation:an intravascular ultrasound analysis with long-term follow-up[J]. Circulation,2006,113:414-9.
[10] Tearney GJ,Regar E,Akasaka T,et al. Consensus standards for acqui sition,measurement,and reporting of intravascular optical coherence tomography studies:a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation[J]. J Am CollCardiol,2012,59:1058-72.
[11] Kim WH,Lee BK,Lee S,et al. Serial changes of minimal stent malapposition not detected by intravascular ultrasound:follow-up optical coherence tomography study[J]. Clin Res Cardiol,2010,99:639-44.
[12] Kim JS,Kim JS,Shin DH,et al. Optical coherence tomographic comparison of neointimal coverage between sirolimus-and resolute zotarolimus-eluting stents at 9 months after stent implantation[J]. Int J Cardiovasc Imaging,2012,28:1281-7.
[13] Choi HH,Kim JS,Yoon DH,et al. Favorable neointimal coverage in everolimus-eluting stent at 9 months after stent implantation:comparison with sirolimus-eluting stent using optical coherence tomography. Int J Cardiovasc Imaging[J]. 2012,28:491-7.
[14] Gutiérrez-Chico JL,Jüni P,García-García HM,et al. Longterm tissue coverage of a biodegradable polylactide polymer-coated biolimus-eluting stent:comparative sequential assessment with optical coherence tomography until complete resorption of the polymer[J]. Am Heart J,2011,162:922-31.
[15] Kawamori H,Shite J,Shinke T,et al. Natural consequence of postintervention stent malapposition, thrombus, tissue prolapse, and dissection assessed by optical coherence tomography at mid-term follow-up[J]. Eur Heart J Cardiovasc Imaging,2013,14(9):865-75.
[16] Gutiérrez-Chico JL,Regar E,Nüesch E,et al. Delayed coverage in malapposed and side-branch struts with respect to well-apposed struts in drug-eluting stents:in vivo assessment with optical coherence tomography[J]. Circulation,2011,124:612-23.
[17] Kim BK,Hong MK,Shin DH,et al. Relationship between stent malapposition and incomplete neointimal coverage after drug-eluting stent implantation[J]. J IntervCardiol,2012,25:270-7.
[18] Kim BK,Shin DH,Kim JS,et al. Optical coherence tomography-based evaluation of malapposed strut coverage after drug-eluting stent implantation[J]. Int J Cardiovasc Imaging,2012,28:1887-94.
[19] Forrester JS,Fishbein M,Helfant R. A paradigm for restenosis based on cell biology:clues for the development of new preventive therapies[J]. J Am CollCardiol,1991,17:758-69.
[20] Kim JS,Kim JS,Kim TH,et al. Comparison of neointimal coverage of sirolimus-eluting stents and paclitaxel-eluting stents using optical coherence tomography at 9 months after implantation[J]. Circ J,2010,74:320-6.
[21] Kim JS,Hong MK,Shin DH,et al. Quantitative and qualitative changes in DES-related neointimal tissue based on serial OCT[J]. JACC Cardiovasc Imaging,2012,5:1147-55.
[22] Guagliumi G,Sirbu V,Musumeci G,et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis:findings from optical coherence tomography and intravascular ultrasound imaging[J]. JACC CardiovascInterv,2012,5:12-20.
[23] Won H,Shin DH,Kim BK,et al. Optical coherence tomography derived cut-off value of uncovered stent struts to predict adverse clinical outcomes after drug-eluting stent implantation[J]. Int J Cardiovasc Imaging,2013,29(6):1255-63.
[24] Gonzalo N,Serruys PW,Okamura T,et al. Optical coherence tomography patterns of stent restenosis[J]. Am Heart J,2009,158:284-93.
[25] Lee SJ,Kim BK,Kim JS,et al. Evaluation of neointimal morphology of lesions with or without in-stent restenosis:an optical coherence tomography study[J]. ClinCardiol,2011,34:633-9.
[26] Nakazawa G,Otsuka F,Nakano M,et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drugeluting stents[J]. J Am CollCardiol,2011,57:1314-22.
[27] Yonetsu T,Kim JS,Kato K,et al. Comparison of incidence and time course of neoatherosclerosis between bare metal stents and drug-eluting stents using optical coherence tomography[J]. Am J Cardiol,2012;110:933-9.
[28] Habara M,Terashima M,Nasu K,et al. Morphological differences of tissue characteristics between early, late, and very late restenosis lesions after first generation drug-eluting stent implantation:an optical coherence tomography study[J]. Eur Heart J Cardiovasc Imaging,2013,14:276-84.
[29] Kimura T,Yokoi H,Nakagawa Y,et al. Three-year follow-up after implantation of metallic coronary-artery stents[J]. N Engl J Med,1996,334:561-6.
[30] Collet CA,Costa JR,Abizaid A,et al. Assessing the temporal course of neointimal hyperplasia formation after different generations of drugeluting stents. JACC CardiovascInterv.2011,4:1067-74.
[31] Kang SJ,Mintz GS,Akasaka T,et al. Optical coherence tomographic analysis of in-stent neoatherosclerosis after drug-eluting stent implantation[J]. Circulation,2011,123:2954-63.
[32] Ko YG,Kim DM,Cho JM,et al. Optical coherence tomography findings of very late stent thrombosis after drug-eluting stent implantation[J]. Int J Cardiovasc Imaging,2012,28:715-23.
[33] Yonetsu T,Kato K,Kim SJ,et al. Predictors for neoatherosclerosis:a retrospective observational study from the optical coherence tomography registry[J]. CircCardiovasc Imaging,2012,5:660-6.
[34] Nagai H,Ishibashi-Ueda H,Fujii K. Histology of highly echolucent regions in optical coherence tomography images from two patients with sirolimus-eluting stent restenosis[J]. Catheter CardiovascInterv,2010, 75:961-3.
[35] Okamura T,Onuma Y,García-García HM,et al. 3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds:a proposal for classification[J]. JACC CardiovascInterv,2010,3:836-44.
[36] Giattina SD,Courtney BK,Herz PR,et al. Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography(PSOCT)[J]. Int J Cardiol,2006,107:400-9.
[37] Tahara N,Imaizumi T,Virmani R,et al. Clinical feasibility of molecular imaging of plaque inflammation in atherosclerosis[J]. J Nucl Med,2009,50:331-4.
本文编辑:孙竹
R812
A
1674-4055(2017)08-1020-03
1300192 天津,天津市第一中心医院心内科
卢成志,E-mail:lucz8@126.com
10.3969/j.issn.1674-4055.2017.08.44