陆天豪 李树峰
·综 述·
声电联合刺激下残余听力的损伤及其机制
陆天豪 李树峰
声电联合刺激(EAS)是一种应用于高频听力严重损失但尚有一定低频听力患者的新技术。对于此类患者,单纯使用助听器不能满足需求,而传统的人工耳蜗植入则可能造成低频残余听力的损失。EAS技术可以继续使用助听器以利用低频区残余听力,同时发挥人工耳蜗在中高频区的替代优势,在听力学上比单独使用上述二者具有明显的优势。但越来越多的研究表明:一部分EAS使用者的低频残余听力会发生迟发性、渐进性的下降,从而对患者造成不利影响。本文综述近年来EAS下残余听力下降及其机制的相关研究进展。(中国眼耳鼻喉科杂志,2017,17:143-147)
声电联合刺激;低频残余听力;人工耳蜗植入
声电联合刺激(electroacoustic stimulation, EAS)是指通过联合使用人工耳蜗获得中、高频听力和使用助听器补偿低频残余听力,使耳蜗同时接受电信号和声信号的一项新技术。该技术主要适用于中高频听力严重损失但尚有一定低频残余听力的感音神经性聋患者[1-5]。
EAS技术可以在继续利用低频区残余听力的同时发挥人工耳蜗在中高频区的替代优势,在听力学上比单独使用上述二者具有明显的优势。Mertens等[6]对接受EAS患者的长期随访研究表明:在术后6个月~10年的随访期间,患者语音感知能力和音乐鉴赏能力均得到持续性的提高,其单音节语音感知[7-8]、长句语音感知、主观评分都较术前有了进步。Baumann等[7]、de Carvalho等[8]的研究也验证了这一观点。为了使EAS发挥有效的作用,低频残余听力的保存至关重要。通过植入手术技术和植入体设计的改进,术后大部分患者低频残余听力得以保存[9-13]。但是随着EAS技术的开展,越来越多的临床研究表明,接近1/3 EAS使用者的残余听力在术后数周到数月发生迟发性、渐进性下降[9, 14-16]。Gstoettner等[9]研究了23例EAS术后患者的残余听力变化,5例(21.7%)有迟发性听力下降;在Gantz等[14]的研究中,手术后听力的保存率可以达到98%,但是在12个月后87例患者中的5例听力完全丢失。而当残余听力损伤之后,EAS使用者将丧失其相对于传统人工耳蜗植入者的优势,并且由于EAS的短电极提供的刺激通道数量不足,可能需要再次手术更换传统的全长电极植入体。
EAS对低频残余听力的影响和损伤机制逐渐得到关注。电刺激对耳蜗正常或残余结构和功能的影响及其机制的研究对于其他神经植入装置的相关研究也将具有重要的借鉴意义。本综述对该领域的最新研究成果进行总结分析。
1.1 手术技巧 不同手术操作技术,如耳蜗开窗方法和圆窗植入部位的选择等,对残余听力保存的影响已得到广泛重视和研究。Giordano等[17]发现术中螺旋韧带的破坏会导致残余听力的下降。Adunka等[18]也通过优化手术技巧来减小对残存听力的影响,包括选择在圆窗膜下方或稍前方位置开窗和改进电极设计减少插入损伤,使低频残余听力的保存率可以达到95%。Usami等[19]采用圆窗植入无创设计的全长电极,结合术中、术后全身应用地塞米松,5例患者的低频残余听力均完整保存。相比耳蜗开窗,圆窗植入的开窗时间更少,也更有助于前庭功能的保护[20]。Rowe等[21-22]应用豚鼠为动物模型,比较圆窗植入和耳蜗造口的电极植入方法以及圆窗植入时分别采用肌肉、骨膜和纤维蛋白胶作为填塞物对耳蜗结构和听力的影响,结果显示圆窗植入时使用肌肉和骨膜可能是低频听力迟发性下降的原因。
DeMason等[23]在电极插入时应用耳蜗微音电位和听神经复合动作电位进行术中监测,可以判断电刺激植入的最佳深度和避免电极对正常毛细胞的损伤,结果显示微音电位较听神经复合电位更为敏感。Pau等[24]也尝试应用听性脑干反应检测术前、术中和术后的阈值。上述术中听功能监测有助于避免植入手术对耳蜗重要结构的损伤。
1.2 植入体设计 组织学研究显示人工耳蜗电极植入会造成圆窗周围和耳蜗底回的损伤,当电极触及基底膜或者骨螺旋板时损伤最为严重[25],而应用可自由变换角度的弹性细电极有助于减少电极植入创伤[26]。Gantz等[27]在24例患者分别使用了6 mm和10 mm长度的电极,结果提示较短的电极更有利于预防耳蜗低频听力区域的损伤。然而即使使用较传统电极更短的电极,部分患者仍然发生了迟发性的残余听力损失[28]。Gstoettner等[9]和Usami等[19]应用MedEL Flex EAS电极的临床研究,显示患者的低频残余听力术后均得以不同程度的保存。Carlson等[29]报道了126例术前有低频残余听力患者植入新一代的人工耳蜗电极,包括Nucleus Contour Advance、Advanced Bionics HR90K和Med El Sonata standard H array等,其植入术后的听力保存率达55%。Gwon等[30]设计了由多层液晶聚合物薄膜替代电极环的新型植入电极阵,可以减小电极阵的硬度,颞骨标本研究显示没有造成明显的损伤,但有待进一步的动物实验和人体研究。
1.3 新生骨和纤维组织形成 电极植入后的骨化曾被认为可能是影响残余听力保存的一个重要因素[31]。Li等[32]研究了12例生前行人工耳蜗植入术的颞骨标本,发现所有病例耳蜗中都有新生骨和纤维组织的形成,在耳蜗开窗区域尤其严重。这种病理改变与耳蜗侧壁的损伤有明显相关性,但与螺旋神经元的数量以及生前的言语识别率没有明显相关性。Nadol等[33]也在电极植入后的患者尸检过程中发现电极周围纤维囊和软骨的形成,在耳蜗顶区同样可以观察到广泛的纤维化。上述研究对象都是传统人工耳蜗植入病例。Tanaka等[34]对正常听力的豚鼠植入人工耳蜗电极并施加慢性电刺激,结果显示6~16 kHz处的听力下降与血管纹的血管密度下降和骨化有密切相关性。在10周的慢性电刺激后,67%术前听力正常的豚鼠在1 kHz区域出现超过10 dB的听力损失,这一现象与EAS迟发性听力损失相似。但1 kHz低频区的听力下降与上述血管纹的血管密度、骨化和纤维化等形态学改变均无明显相关性。
1.4 术后感染和炎症 Smouha等[35]的动物实验研究表明耳蜗开窗处周围会发生炎症反应,并且炎症反应的程度和术后听力损伤的程度呈正相关。Rajan等[36]进行了一项前瞻性的临床研究,术前鼓室内注射糖皮质激素患者低频残余听力的保存明显好于未注射的患者,术后的残余听力也更稳定。van de Water等[37]的动物实验研究显示局部应用地塞米松的豚鼠人工耳蜗植入后的听力损失明显小于未应用地塞米松组,其作用可能是通过提高抗凋亡基因、降低凋亡基因的表达实现的。此外,James等[38]的动物实验研究也显示地塞米松局部应用对于电极插入造成的听力下降具有保护作用,尤其是在插入困难的手术中,而且可以减轻电极引起的异物反应。糖皮质激素对电极插入造成的毛细胞和听力损伤的保护作用,提示电极植入术后的炎症反应对残余听力存在不利影响。
1.5 内耳淋巴液循环紊乱 Radeloff等[39]以豚鼠为模型,将血液通过耳蜗造口的方式注入鼓阶内,并在注射前和注射后2个月内的不同时间点测试听神经复合动作电位的阈值,实验证明即使小量的血液也会导致暂时性或者永久性耳蜗听力下降。
1.6 电钻噪声 Pau等[40]测量了颞骨标本在耳蜗造口过程中的圆窗膜记录到的噪声,结果显示当钻头接触到骨内膜时其声压级可超过130 dB SPL,强度与电钻直接接触听骨链相当,可能会在术中对内耳结构造成严重影响。Stromberg等[41]应用颞骨标本的研究也显示耳蜗造孔时噪声可达114~128 dB SPL,足以引起噪声性听力损伤。
2.1 电刺激对毛细胞和螺旋神经元的影响 EAS残余听力损失患者接受长期的电刺激,不能排除电刺激本身是造成迟发性残余听力损失的因素。动物实验的对照研究表明,无论是正常还是噪声致聋的豚鼠在接受慢性电刺激后会出现1 kHz区域的听力下降,而不接受电刺激的豚鼠则不会出现[34, 42]。传统人工耳蜗植入患者的毛细胞等感音结构已经损伤,电刺激的作用对象为螺旋神经元。因此,以往相关研究大多仅关注电刺激对螺旋神经元的影响,而电刺激对毛细胞等感音结构和残余听力的影响相关研究相对较少。电刺激除了可以直接兴奋邻近的螺旋神经元外,还可以引起残余低频区毛细胞的兴奋[43]。在以往电刺激安全性相关的动物实验研究中,没有证据显示人工耳蜗电刺激可以引起毛细胞和螺旋神经元的数量减少[44-48]。值得注意的是,最近的1例EAS迟发性听力损失患者的颞骨病理研究也显示,其低频区毛细胞和螺旋神经元的数量没有明显减少[49]。Kopelovich等[50]针对85例EAS接受者的回顾性分析显示,17例出现了迟发性残余听力损失,其中5例采用的是较大强度的电刺激,统计学分析显示较高强度的电刺激与残余听力的损失存在相关性。Dillon等[51]对EAS接受者的一项回顾性分析表明,残余听力的迟发性下降与植入后电刺激的强度之间没有明显相关性。总之,电刺激不是通过毛细胞和螺旋神经元数量的减少引起残余听力下降的途径。
2.2 电刺激对內毛细胞突触和听神经纤维的影响 Dodson等[52]应用透射电镜研究显示,圆窗部位电刺激可以导致外毛细胞传出神经突触减少,而不影响毛细胞数量和传入神经。Tanaka等[34]应用正常听力的豚鼠为模型植入人工耳蜗电极并施加慢性电刺激,在6~16 kHz区域和1 kHz区域均出现了听力损失。但与6~16 kHz处听力损失不同,1 kHZ低频区的听力下降与上述血管纹的血管密度、骨化、纤维化,毛细胞和螺旋神经元的数量等形态学改变均无明显相关性。同一个研究团队的Reiss等[42]进一步应用噪声性耳聋后慢性电刺激豚鼠模型以模拟临床上高频听力丢失仍有低频残余听力的状况,同样出现了1 kHz低频区域的听力损失。与前述研究结果相同,该听力损失仍然与毛细胞和螺旋神经元的数量没有相关性,但与內毛细胞突触前和突触后受体的数量减少明显相关。Kopelovich等[50]应用电刺激体外培养的耳蜗组织,结果显示一定强度的电刺激可以引起耳蜗传入神经纤维的减少而不影响螺旋神经元和毛细胞的数量。上述研究提示EAS后延迟的听力丢失可能与毛细胞突触和听神经纤维的丢失有关。
2.3 电刺激引起内耳超微结构改变的机制 电刺激引起毛细胞突触和听神经纤维等超微结构改变的机制尚缺乏研究。Li等[53]的研究显示人工耳蜗电刺激对体外培养螺旋神经元神经突的生长有排斥的导向作用。Shen等[54]的进一步的研究显示电刺激能抑制体外培养螺旋神经元神经突的生长,而钙离子通道阻滞剂可以减少这一抑制作用。这提示电刺激引起的钙离子通道异常开放可能与其对内耳结构的损伤有关。Frolenkov等[55]的研究表明,电刺激可以使豚鼠单离外毛细胞发生非对称去极化而产生变形,进而影响外毛细胞的微观力学和功能。体内试验也表明电刺激内耳还可引起外毛细胞的能动性增强,进而引起基底膜的运动[56]。上述电刺激引起的外毛细胞和基底膜的运动称为电声反应(electrophonic response)。在体电生理学研究显示电刺激可以改变听神经的放电特性,导致累加(buildup)和爆发(bursting)现象[57];也可以通过不应期这一形式来掩蔽一定特性的声刺激[58];同时电刺激反应也会被一定特性的声刺激增强[59]。上述电刺激和声刺激的相互作用还存在非线性的特征[57-59]。可以推测,声刺激和电刺激引起的毛细胞和听神经反应的叠加、掩蔽和增强等相互作用可能对低频区毛细胞和听神经的结构和功能产生不利影响。
EAS接受者中有一部分是噪声引起的听力损伤。Kopelovich等[60]对85例接受EAS刺激的患者进行了回顾性分析,其中22例出现了迟发性残余听力下降,统计学分析表明其与患者的噪声性聋病史、年龄和性别有相关性。噪声可以导致内耳兴奋性的损伤。近年来,内毛细胞与蜗神经之间的突触(以下简称内毛细胞突触)等耳蜗超微结构病变在听力损伤中的作用得到越来越多的重视。动物实验研究表明:数小时中等强度的噪声暴露可以导致永久性的内毛细胞突触减少和蜗神经外周末梢退化,但不引起毛细胞和螺旋神经元数量的变化[61-62]。值得注意的是,高频噪声损伤后的豚鼠接受10周的EAS后,部分个体出现1 kHz的听力下降,其与内毛细胞突触前后结构数量的减少具有明显的相关性;但该研究未发现EAS组和非EAS组之间在听阈和内毛细胞突触数量之间差异有统计学意义,因而不能确定内毛细胞突触数量减少是否与EAS有关[42]。但上述研究提示EAS听力损失可能与噪声音性耳聋的发病机制存在一定联系,内毛细胞突触减少可能在EAS听力损失中有一定作用。
除了之前讨论的2大类机制之外,老年性耳聋和潜在疾病的自然病程都会影响EAS后残余听力的保存。患者个体化的差异亦会对残余听力产生较大的影响。
总之,EAS接受者迟发性残余听力下降与术后即发的听力损失机制不同,可能与多种因素有关,包括电刺激和声刺激在低频区引起毛细胞和听神经反应的相互作用而可能导致的兴奋性毒性、内毛细胞与听神经间突触结构和神经纤维的变化、血管纹血管密度降低和内耳开窗的填塞物等。其中EAS下内耳超微结构和功能改变在其中的作用有待深入研究。
[ 1 ] Gantz BJ, Turner CW. Combining acoustic and electrical hearing [J]. Laryngoscope, 2003, 113(10): 1726-1730.
[ 2 ] Kiefer J PM, Adunka O, Stürzebecher E, et al. Combined electric and acoustic stimulation of the auditory system: results of a clinical study [J]. Audiol Neurootol, 2005, 10(3): 134-144.
[ 3 ] Turner C, Gantz BJ, Reiss L. Integration of acoustic and electrical hearing [J]. J Rehabil Res Dev, 2008, 45(5): 769-778.
[ 4 ] von Ilberg C, Kiefer J, Tillein J, et al. Electric-acoustic stimulation of the auditory system. New technology for severe hearing loss [J]. ORL J Otorhinolaryngol Relat Spec, 1999, 61(6): 334-340.
[ 5 ] von Ilberg CA, Baumann U, Kiefer J, et al. Electric-acoustic stimulation of the auditory system: a review of the first decade [J]. Audiol Neurootol, 2011, 16 (Suppl 2):1-30.
[ 6 ] Mertens G, Punte AK, Cochet E, et al. Long-term follow-up of hearing preservation in electric-acoustic stimulation patients [J]. Otol Neurotol, 2014, 35(10): 1765-1772.
[ 7 ] Baumann U, Helbig S. Hearing with combined electric acoustic stimulation [J]. HNO, 2009, 57(6): 542-550.
[ 8 ] de Carvalho GM, Guimaraes AC, Duarte AS, et al. Hearing preservation after cochlear implantation: UNICAMP outcomes [J]. Int J Otolaryngol, 2013, 2013: 107186.
[ 9 ] Gstoettner W, Helbig S, Settevendemie C, et al. A new electrode for residual hearing preservation in cochlear implantation: first clinical results [J]. Acta Otolaryngol, 2009, 129(4): 372-379.
[10] Gstoettner W, Kiefer J, Baumgartner WD, et al. Hearing preservation in cochlear implantation for electric acoustic stimulation [J]. Acta Otolaryngol, 2004, 124(4): 348-352.
[11] Gstoettner WK, Helbig S, Maier N, et al. Ipsilateral electric acoustic stimulation of the auditory system: results of long-term hearing preservation [J]. Audiol Neurootol, 2006, 11(Suppl 1): 49-56.
[12] Muller J, Helms J. Cochlear implantation with preservation of residual deep frequency hearing [J]. HNO, 2005, 53(9): 753-755.
[13] Adunka OF, Pillsbury HC, Adunka MC, et al. Is electric acoustic stimulation better than conventional cochlear implantation for speech perception in quiet? [J]. Otol Neurotol, 2010, 31(7): 1049-1054.
[14] Gantz BJ, Dunn C, Oleson J, et al. Multicenter clinical trial of the Nucleus Hybrid S8 cochlear implant: final outcomes [J]. Laryngoscope, 2016, 126(4): 962-973.
[15] Gantz BJ, Hansen MR, Turner CW, et al. Hybrid 10 clinical trial: preliminary results [J]. Audiol Neurootol, 2009, 14(Suppl 1): 32-38.
[16] Santa Maria PL, Domville-Lewis C, Sucher CM, et al. Hearing preservation surgery for cochlear implantation—hearing and quality of life after 2 years [J]. Otol Neurotol, 2013, 34(3): 526-531.
[17] Giordano P, Hatzopoulos S, Giarbini N, et al. A soft-surgery approach to minimize hearing damage caused by the insertion of a cochlear implant electrode: a guinea pig animal model [J]. Otol Neurotol, 2014, 35(8): 1440-1445.
[18] Adunka OF, Pillsbury HC, Buchman CA. Minimizing intracochlear trauma during cochlear implantation [J]. Adv Otorhinolaryngol, 2010, 67: 96-107.
[19] Usami S, Moteki H, Suzuki N, et al. Achievement of hearing preservation in the presence of an electrode covering the residual hearing region [J]. Acta Otolaryngol, 2011, 131(4): 405-412.
[20] Tsukada K, Moteki H, Fukuoka H, et al. Effects of EAS cochlear implantation surgery on vestibular function [J]. Acta Otolaryngol, 2013, 133(11): 1128-1132.
[21] Rowe D, Chambers S, Hampson A, et al. Delayed low frequency hearing loss caused by cochlear implantation interventions via the round window but not cochleostomy [J]. Hear Res, 2016, 333: 49-57.
[22] Rowe D, Chambers S, Hampson A, et al. The effect of round window sealants on delayed hearing loss in a guinea pig model of cochlear implantation [J]. Otol Neurotol, 2016, 37(8): 1024-1031.
[23] DeMason C, Choudhury B, Ahmad F, et al. Electrophysiological properties of cochlear implantation in the gerbil using a flexible array [J]. Ear Hear, 2012, 33(4): 534-542.
[24] Pau HW, Just T, Dahl R, et al. Monitoring residual hearing during cochlear implantation by intra-operative brainstem audiometry [J]. Auris Nasus Larynx, 2008, 35(2): 264-268.
[25] O'Leary MJ, Fayad J, House WF, et al. Electrode insertion trauma in cochlear implantation [J]. Ann Otol Rhinol Laryngol, 1991, 100(9 Pt 1): 695-699.
[26] Arnoldner C, Helbig S, Wagenblast J, et al. Electric acoustic stimulation in patients with postlingual severe high-frequency hearing loss: clinical experience [J]. Adv Otorhinolaryngol, 2010, 67: 116-124.
[27] Gantz BJ, Turner C, Gfeller KE, et al. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing [J]. Laryngoscope, 2005, 115(5): 796-802.
[28] Woodson EA, Reiss LA, Turner CW, et al. The Hybrid cochlear implant: a review [J]. Adv Otorhinolaryngol, 2010, 67: 125-134.
[29] Carlson ML, Driscoll CL, Gifford RH, et al. Implications of minimizing trauma during conventional cochlear implantation [J]. Otol Neurotol, 2011, 32(6): 962-968.
[30] Gwon TM, Min KS, Kim JH, et al. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion [J]. Biomed Microdevices, 2015, 17(2): 32.
[31] Clark GM, Shute SA, Shepherd RK, et al. Cochlear implantation: osteoneogenesis, electrode-tissue impedance, and residual hearing [J]. Ann Otol Rhinol Laryngol Suppl, 1995, 166: 40-42.
[32] Li PM, Somdas MA, Eddington DK, et al. Analysis of intracochlear new bone and fibrous tissue formation in human subjects with cochlear implants [J]. Ann Otol Rhinol Laryngol, 2007, 116(10): 731-738.
[33] Nadol JB, Eddington DK, Burgess BJ. Foreign body or hypersensitivity granuloma of the inner ear after cochlear implantation: one possible cause of a soft failure? [J]. Otol Neurotol, 2008, 29(8): 1076-1084.
[34] Tanaka C, Nguyen-Huynh A, Loera K, et al. Factors associated with hearing loss in a normal-hearing guinea pig model of Hybrid cochlear implants [J]. Hear Res, 2014, 316: 82-93.
[35] Smouha EE. Surgery of the inner ear with hearing preservation: serial histological changes [J]. Laryngoscope, 2003, 113(9): 1439-1449.
[36] Rajan GP, Kuthubutheen J, Hedne N, et al. The role of preoperative, intratympanic glucocorticoids for hearing preservation in cochlear implantation: a prospective clinical study [J]. Laryngoscope, 2012, 122(1): 190-195.
[37] van de Water TR, Dinh CT, Vivero R, et al. Mechanisms of hearing loss from trauma and inflammation: otoprotective therapies from the laboratory to the clinic [J]. Acta Otolaryngol, 2010, 130(3): 308-311.
[38] James DP, Eastwood H, Richardson RT, et al. Effects of round window dexamethasone on residual hearing in a guinea pig model of cochlear implantation [J]. Audiol Neurootol, 2008, 13(2): 86-96.
[39] Radeloff A, Unkelbach MH, Tillein J, et al. Impact of intrascalar blood on hearing [J]. Laryngoscope, 2007, 117(1): 58-62.
[40] Pau HW, Just T, Bornitz M, et al. Noise exposure of the inner ear during drilling a cochleostomy for cochlear implantation [J]. Laryngoscope, 2007, 117(3): 535-540.
[41] Strömberg AK, Yin X, Olofsson A, et al. Evaluation of the usefulness of a silicone tube connected to a microphone in monitoring noise levels induced by drilling during mastoidectomy and cochleostomy [J]. Acta Otolaryngol, 2010, 130(10): 1163-1168.
[42] Reiss LA, Stark G, Nguyen-Huynh AT, et al. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired guinea pig model [J]. Hear Res, 2015, 327: 163-174.
[43] Kang SY, Colesa DJ, Swiderski DL, et al. Effects of hearing preservation on psychophysical responses to cochlear implant stimulation [J]. J Assoc Res Otolaryngol, 2010, 11(2): 245-265.
[44] Ni D, Shepherd RK, Seldon HL, et al. Cochlear pathology following chronic electrical stimulation of the auditory nerve. I: Normal hearing kittens [J]. Hear Res, 1992, 62(1): 63-81.
[45] Xu J, Shepherd RK, Millard RE, et al. Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study [J]. Hear Res, 1997, 105(1/2): 1-29.
[46] Coco A, Epp SB, Fallon JB, et al. Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? [J]. Hear Res, 2007, 225(1-2): 60-70.
[47] Irving S, Trotter MI, Fallon JB, et al. Cochlear implantation for chronic electrical stimulation in the mouse [J]. Hear Res, 2013, 306: 37-45.
[48] Shepherd RK, Matsushima J, Martin RL, et al. Cochlear pathology following chronic electrical stimulation of the auditory nerve: II. Deafened kittens [J]. Hear Res, 1994, 81(1/2): 150-166.
[49] Quesnel AM, Nakajima HH, Rosowski JJ, et al. Delayed loss of hearing after hearing preservation cochlear implantation: Human temporal bone pathology and implications for etiology [J].Hear Res, 2016, 333: 225-234.
[50] Kopelovich JC, Reiss LAJ, Etler CP, et al. Hearing loss after activation of hearing preservation cochlear implants might be related to afferent cochlear innervation injury [J]. Otol Neurotol, 2015, 36(6): 1035-1044.
[51] Dillon MT, Bucker AL, Adunka MC, et al. Impact of electric stimulation on residual hearing [J]. J Am Acad Audiol, 2015, 26(8): 732-740.
[52] Dodson HC, Walliker JR, Bannister LH, et al. Structural effects of short term and chronic extracochlear electrical stimulation on the guinea pig spiral organ [J]. Hear Res, 1987, 31(1): 65-78.
[53] Li S, Li H, Wang Z. Orientation of spiral ganglion neurite extension in electrical fields of charge-balanced biphasic pulses and direct current in vitro [J]. Hear Res, 2010, 267(1/2): 111-118.
[54] Shen N, Liang Q, Liu Y, et al. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons [J]. Neuroscience Letters, 2016, 624: 92-99.
[55] Frolenkov GI, Kalinec F, Tavartkiladze GA, et al. Cochlear outer hair cell bending in an external electric field [J]. Biophys J, 1997, 73(3): 1665-1672.
[56] Xue S, Mountain DC, Hubbard AE. Electrically evoked basilar membrane motion [J]. J Acoust Soc Am, 1995, 97(5 Pt 1): 3030-3041.
[57] Miller CA, Abbas PJ, Robinson BK, et al. Electrical excitation of the acoustically sensitive auditory nerve: single-fiber responses to electric pulse trains [J]. J Assoc Res Otolaryngol, 2006, 7(3): 195-210.
[58] Stronks HC, Versnel H, Prijs VF, et al. Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig [J]. Hear Res, 2010, 259(1/2): 64-74.
[59] Miller CA, Abbas PJ, Robinson BK, et al. Auditory nerve fiber responses to combined acoustic and electric stimulation [J]. J Assoc Res Otolaryngol, 2009, 10(3): 425-445.
[60] Kopelovich JC, Reiss LA, Oleson JJ, et al. Risk factors for loss of ipsilateral residual hearing after hybrid cochlear implantation [J]. Otol Neurotol, 2014, 35(8): 1403-1408.
[61] Maison SF, Usubuchi H, Liberman MC. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure [J]. J Neurosci, 2013, 33(13): 5542-5552.
[62] Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after 'temporary' noise-induced hearing loss [J]. J Neurosci, 2009, 29(45): 14077-14085.
(本文编辑 杨美琴)
Loss of residual hearing in electroacoustic stimulation and its mechanism
LUTian-hao,LIShu-feng.
DepartmentofOtolaryngology,EyeEarNoseandThroatHospitalofFudanUniversity;ShanghaiClinicalCenterofHearingMedicine;HearingMedicineKeyLaboratoryoftheNationalHealthandFamilyPlanningCommission(NHFPC);Shanghai200031,China
LI Shu-feng, Email: shufeng.li@yahoo.com
Electroacoustic stimulation (EAS) is a new technology recently used in patients with profound middle- or high-frequency hearing loss but having residual low-frequency hearing. For this group of candidates, wearing hearing aids alone can’t meet their hearing requirements, while conventional cochlear implant could lead to the loss of residual low-frequency hearing. As for EAS, the aided residual low-frequency hearing and the substitute advantage of cochlear implantation in high-frequency hearing could be achieved simultaneously, which is far more efficient than utilizing either part of the single strategy. More and more studies have indicated that a part of recipients suffered a delayed and progressive decline in residual low frequency hearing as it has adverse effects on the patients. This review summarizes recent research work on the residual hearing loss under EAS and its related mechanisms. (Chin J Ophthalmol and Otorhinolaryngol,2017,17:143-147)
Electroacoustic stimulation; Residual low-frequency hearing; Cochlear implantation
复旦大学附属眼耳鼻喉科医院耳鼻喉科 上海市听觉医学临床中心 国家卫计委听觉医学重点实验室 上海 200031
李树峰(Email:shufeng.li@yahoo.com)
10.14166/j.issn.1671-2420.2017.02.021
2016-10-08)