叶传林
【摘 要】现代教育强调“知识结构”与“学习过程”,目的在于发展学生的思维能力,而把知识作为思维过程的材料和媒介。只有把掌握知识、技能作为中介来发展学生的思维品质才符合素质教育的基本要求。数学知识可能在将来会遗忘,但思维品质的培养会影响学生的一生,思维品质的培养是数学教育的价值得以真正实现的理想途径。教育心理学理论认为:思维是人脑对事物本质和事物之间规律性关系概括的间接的反映。思维是认知的核心成分,思维的发展水平决定着整个知识系统的结构和功能。因此,开发高中学生的思维潜能,提高思维品质,具有十分重大的意义。
【关键词】数学;思维能力;培养
学生思维的灵活性主要表现于:(1) 思维起点的灵活:能从不同角度、不同层次、不同方法根据新的条件迅速确定思考问题的方向。(2)思维过程的灵活:能灵活运用各种法则、公理、定理、规律、公式等从一种解题途径转向另一种途径。(3)思维迁移的灵活:能举一反三,触类旁通。
如何使更多的学生思维具有灵活特点呢?我在教学实践中作了一些探索:
一、举一反三,培养学生思维的灵活性
在当前的数学教学中,普遍存在着比较重视集中思维的训练,而相对忽视了发散思维的培养。发散思维是理解教材、灵活运用知识所必须的,也是迎接信息时代、适应未来生活所应具备的能力。
如教学“关于x的方程mx2-3x=2是一元二次方程的条件是________。”可设计如下一串题组:
(1)关于x的方程(k2-k-2)x2+kx+1=0是一元二次方程的条件是________。
(2)关于x的一元二次方程(2k+1)x2+4kx+2k-3=0有实根,则k的取值范围是________。
(3)关于x的方程ax2-2x+3=0有解,则a的取值范围是________。
这个题型条件不断变化,难度逐步增大,最终都落到“b2-4ac≥0及a的系数是否为0”这一解题规律上,由浅入深,由易到难,学生灵活应变,有利于开阔思路,培养思维的灵活性。
开放型题目的引入,可以引导学生从不同角度来思考,不仅仅思考条件本身,而且要思考条件之间的关系。要根据条件运用各种综合变换手段来处理信息、探索结论,有利于思维起点灵活性的培养,也有利于孜孜不倦的钻研精神和创造力的培养。
三、重视数学思想方法的教学,指导学生提高数学意识
教师的教法常常影响到学生的学法。灵活多变的教学方法对学生思维灵活性的培养起着潜移默化的作用,而富有新意的学法指导能及时为学生注人灵活思维的活力。
“导入出新”——良好的开端是成功的一半。引人入胜的教学导入可以激发学习兴趣和热情。以“创设情境”,“叙述故事”、“利用矛盾”、“设置悬念”、“引用名句”、“巧用道具”等新颖多变的教学手段,使学生及早进入积极思维状态。
“错解剖析”——提供给学生题解过程,但其中有错误的地方。让学生反串角色,扮演教师批改作业。换一个角度来考察学生的知识掌握情况,寻找错误产生的原因,以求更好的加深对知识的掌握。
“例题变式”——从例题入手,变换条件寻求结论的不同之处;变换结论寻求条件的不同之处;变换提出问题的背景,寻求多题一解;变换问题的思考角度,寻求一题多解;以变来培养学生灵活的思维。
“编制试卷”——列出考查知识点、考查重点、试题类型,让学生自己编制一份测验试卷.并给出解答。使学生站在老师的角度体验出题心理,更好的掌握知识结构和思维方式。
总而言之,新课程标准下学生思维灵活性的培养,不是一触而就的事情,需要我们不断的探索、研究和总结。我相信只要我们坚持不懈地努力,立足教育之本,学生思维灵活性的培养,一定能有显著提高。