杨天伟,张霁,刘鸿高,王元忠,*
1. 云南省农业科学院药用植物研究所,昆明 650200 2. 云南农业大学农学与生物技术学院,昆明 650201 3. 云南省省级中药原料质量监测技术服务中心,昆明 65200
云南野生牛肝菌中砷元素含量测定及食用安全评价
杨天伟1,2,张霁1,3,刘鸿高2,王元忠1,3,*
1. 云南省农业科学院药用植物研究所,昆明 650200 2. 云南农业大学农学与生物技术学院,昆明 650201 3. 云南省省级中药原料质量监测技术服务中心,昆明 65200
通过ICP-AES法测定了26个云南野生牛肝菌居群中As元素含量,分析不同地区、种类牛肝菌对As的富集特征;采用单项污染指数法评价云南野生牛肝菌的As污染水平;根据FAO/WHO规定的每周As允许摄入量评估野生牛肝菌的As暴露风险。结果显示:(1)不同产地、种类牛肝菌中As含量差异明显,其中菌盖的As平均含量在(0.18±0.31)~(13.33±2.21) mg·kg-1dw之间,菌柄的As平均含量在(0.06±0.10)~(17.09±5.8) mg·kg-1dw之间;表明牛肝菌对As元素的富集程度与牛肝菌种类、生长环境等因素有关;(2)不同种类牛肝菌菌盖、菌柄的As污染指数分别在0.35~26.66及0.12~34.20之间,且多数牛肝菌的As污染指数大于1,表明多数牛肝菌的As含量超过GB2762-2012规定的限量标准,处于重污染水平;(3)若成年人每周食用500 g新鲜牛肝菌,则通过牛肝菌摄入的As均低于FAO/WHO规定的PTWI标准(As≤0.9 mg),未达到As暴露水平;然而日常生活中人们除了通过野生牛肝菌摄入As元素外还会通过其他食物(大米、肉类等)、饮水、呼吸等途径摄入As元素,因此,为了防止As暴露危害人体健康,不宜大量或长期食用野生牛肝菌。
砷;野生牛肝菌;健康风险;单项污染指数;云南
Received 16 November 2015 accepted 2 January 2016
砷(As)及其化合物是公认的有毒致癌物质,其中无机砷的毒性、致癌、致突变性大于有机砷[1-3]。As及其化合物可通过食物、水、呼吸和皮肤接触进入人体,蓄积于人体的组织或器官,当As蓄积量超过一定限量时,会影响人体健康和生命安全[4-7]。食物和饮水是人体摄入As的重要途径,尤其通过食物摄入的As占人体内总As的比例较高,因此食物中的As成为非职业性As暴露的主要原因[8-9]。
食用菌营养丰富,味道鲜美被誉为21世纪绿色优质的健康食品[10-11];随着人民生活水平提高,食用菌成为餐桌上接人待客的佳肴[12]。云南野生牛肝菌是世界性著名食用菌,它不仅是煲汤、火锅的重要食材,也是罐头、糕点的美味配料,目前已出口到英国、德国、意大利、日本等40多个国家。然而研究显示,野生食用菌对重金属有很强的富集能力,因此食用菌中有毒重金属超标成为消费者重金属暴露的潜在风险[13-17]。
据文献报道,食用菌对As元素有很强的富集能力;1998年丹麦的学者研究了As污染与未污染地区紫蜡蘑(Laccaria amethystina)对As的富集程度,发现污染地区紫蜡蘑的As含量能达到1 420 mg·kg-1dry weight (dw)[18]。Zhang等[19]测定了云南不同地区野生蜡蘑属真菌的As含量,发现红蜡蘑(Laccaria laccata),红榛色蜡蘑(Laccaria vinaceoave)和紫晶蜡蘑(Laccaria amethysthea)的菌盖中As含量均有超标现象,食用有潜在的健康风险。Liu等[20]采用ICP-MS测定了采自云南不同地区的8种野生食用菌的As含量,结果显示美味牛肝菌(Boletus edulis)、大红菇(Russula alutacea)、松口蘑(Tricholoma matsutake)等多种食用菌的As含量超标。因此分析野生食用菌中As元素含量,了解野生食用菌对As的富集特征及进行健康风险评估有重要意义。
本文采集了10多种云南常见的野生牛肝菌样品,采用ICP-AES法测定了牛肝菌中As元素含量,分析不同种类牛肝菌对As的富集规律,根据GB2762-2012规定的食用菌污染物限量标准分析野生牛肝菌的As污染水平;按联合国粮农组织和世界卫生组织(FAO/WHO)规定的每周As允许摄入量标准进行食用安全评估,为野生牛肝菌的食用安全评价提供数据依据。
1.1 实验材料
野生牛肝菌采集后用塑料刀刮去泥土、砂石、杂草、枯枝等异物,依次用自来水和超纯水清洗,于恒温箱中50 ℃烘干至恒重,粉碎过80目塑料筛盘,保存于聚乙烯自封袋中,备用。牛肝菌种类及采集地点见表1。
1.2 仪器及试剂
仪器:ICPE-9000电感耦合等离子体原子发射光谱仪(日本岛津公司);MARS6型微波消解仪(美国CEM公司)。
试剂:65%硝酸(优级纯),30%过氧化氢(分析纯),As元素标准溶液(济南众标科技有限公司);生物成分分析标准物质选用茶叶(GBW07605)和菠菜(GBW10015)(地矿部物化探研究所),超纯水。
1.3 消解牛肝菌样品
精密称取0.3000 g牛肝菌样品,放入消解罐中,加入6 mL硝酸,3 mL 30%双氧水和1 mL超纯水,加盖密封,按表2的微波消解步骤及条件将牛肝菌样品消解完全,冷却后取出消解罐;将消解液完全转移到25 mL具塞比色管,用超纯水定容到25 mL刻度线,摇匀,澄清后待测。用上述方法消解茶叶、菠菜标准物质及制备空白样品。
表1 牛肝菌样品信息
表2 微波消解条件
1.4 建立标准曲线
取1 mL As元素标准溶液(1 000 μg·mL-1)于100 mL容量瓶中,用10% HNO3定容到刻度线,摇匀,配成10 μg·mL-1的As标准储备液。分别取0.00、0.20、0.50、1.00、5.00、10.00 mL As元素标准储备液(10 μg·mL-1)于100 mL容量瓶中,用10% HNO3定容,配制成0.0、0.02、0.05、0.1、0.5、1.0 μg·mL-1的标准溶液用于建立As元素的标准曲线。
1.5 As含量测定
ICP-AES的工作参数设定为:等离子体气流速为10 L·min-1,载气流速为0.7 L·min-1,辅助气流速为0.6 L·min-1,高频频率为27.12 MHz,输出功率为1.2 kW。As元素的测定波长选择189.042 nm;按从低到高的浓度梯度测定1.4节配制的As元素标准溶液,建立标准曲线;然后测定空白试样,标准物质(茶叶、菠菜)和牛肝菌样品的As含量。
1.6 实验数据处理
牛肝菌的As元素含量进行方差分析,比较不同种类牛肝菌对As的富集情况;根据FAO/WHO规定的每周As允许摄入量标准和我国GB2762-2012规定的食用菌As限量标准,评估野生牛肝菌食用安全性及As暴露风险。以单项污染指数法分析As的污染程度,其计算公式为:
PAs=CAs/SAs
其中PAs为牛肝菌的As污染指数,CAs为牛肝菌样品的As含量,SAs为食用菌及其制品中As限量标准。
2.1 方法学考察
As元素的标准曲线方程为:y=0.0935x+0.2117相关系数r2=0.9994。平行3次测定茶叶标准物质(GBW07605)中As平均含量为(0.274±0.06) mg·kg-1与标准值(0.28±0.04) mg·kg-1相近,菠菜标准物质(GBW10015)的As含量测定值为(0.21±0.02) mg·kg-1与标准值(0.23±0.03) mg·kg-1比较接近;牛肝菌样品的As加标回收率为92.8%,表明该方法准确、可靠。
表3 牛肝菌的As含量及菌盖、菌柄的含量比
注:ND表示未检出;Q(c/s)指菌盖与菌柄的As含量比。
Note: ND is not detected; Q(c/s)is the As concentration quotient of cap to stipe.
2.2 牛肝菌As含量分析
牛肝菌样品的As含量测定结果见表3。由表3可知不同种类、产地牛肝菌菌盖、菌柄的As含量存在明显差异,其中采自玉溪易门普贝的栗色牛肝菌菌盖、菌柄的As平均含量最低分别为:(0.18±0.31) mg·kg-1dw和(0.06±0.10) mg·kg-1dw,而采自昆明五华区的灰疣柄牛肝菌菌盖、菌柄的As含量最高分别为(13.33±2.21) mg·kg-1dw和(17.09±5.8) mg·kg-1dw,这2种牛肝菌菌盖或菌柄的As含量均具有显著性差异(P<0.05)。采自普洱思茅区的绒柄牛肝菌菌盖、菌柄的As含量仅次于昆明五华区的灰疣柄牛肝菌,分别达到(10.81±3.03) mg·kg-1dw和(13.38±2.75) mg·kg-1dw;2种牛肝菌菌盖的As含量存在差异但未到达显著水平,而菌柄的As含量差异达到显著水平(P<0.05);不同种类、产地牛肝菌的砷含量差异可能与牛肝菌种类及不同地区土壤、气候等环境差异有关。
由同一居群不同牛肝菌子实体的As含量范围可知,同一种牛肝菌不同子实体间的As含量有明显差异。比如采自普洱思茅区的10个绒柄牛肝菌子实体(2号样品)菌盖的As含量在0.04~10.34 mg·kg-1dw之间,菌柄的As含量在0.37~6.35 mg·kg-1dw之间;采自昆明晋宁宝峰的11个美味牛肝菌子实体(9号样品)菌盖、菌柄的As含量分别在0.05~1.79 mg·kg-1dw和未检出~1.16 mg·kg-1dw之间,表明牛肝菌对As元素的富集程度还与牛肝菌的生长阶段、子实体大小等自身因素有关。
本实验所测定的牛肝菌样品中As含量远低于文献报道的蜡蘑属(Laccaria)真菌及紫星裂盘菌(Sarcosphaera coronaria)的As最高含量值[19,21]。Zhang等[22]测定了云南及周边地区48种野生食药用蘑菇中As元素含量,发现不同种类野生菌中As含量有明显差异,其中黄硬皮马勃(Scleroderma citrinum)的As含量最高为1.7 mg·kg-1dw,香菇(Lentinus edodes)中含量最低,仅为0.019 mg·kg-1dw,多数牛肝菌样品的As含量低于0.8 mg·kg-1dw。黄晨阳等[23]测定了12种野生食用菌的重金属含量,发现华丽牛肝菌(Boletus magnificus)的As含量最低为0.55 mg·kg-1dw,而松茸(Tricholoma matsutake)的As含量最高,达到5.2 mg·kg-1dw。Ayaz等[24]测定了土耳其地区野生食用菌中多种矿质元素含量,发现红蜡蘑中As含量最高,而美味牛肝菌、鸡油菌(Cantharellus cibarius)等样品中未未检出。
2.3 牛肝菌不同部位As含量差异分析
研究报道,元素在食用菌的不同部位中分布不均匀,一般呈现菌盖>菌柄的规律,但也因元素种类及食用菌物种不同而存在差异[25]。牛肝菌菌盖与菌柄的As含量比(QC/S)能反映出菌盖、菌柄对As元素的富集能力差异。由表3可知,不同产地、种类牛肝菌菌盖、菌柄的As含量比(QC/S)介于0.19~2.99之间,其中采自曲靖泽桂花树的黑绒盖牛肝菌的QC/S值最小,菌盖的As含量远低于菌柄;采自玉溪易门普贝的栗色牛肝菌菌盖的As含量是菌柄的2.99倍(QC/S=2.99);而样品4和样品12的QC/S分别为1.04和0.91,表明菌盖、菌柄的As含量较接近。综上可知,本研究中牛肝菌不同部位对As的富集程度没有规律可循,存在菌盖含量高于菌柄或菌柄的含量高于菌盖的情况,也存在菌盖与菌柄As含量比较接近的现象,这可能与牛肝菌对As元素的富集特性有关。
表4 不同种类牛肝菌的As污染指数及As摄入量估计
注:“*”指食用500 g新鲜牛肝菌摄入的As。
Note:“*”is As intake estimates when consumption of 500 g fresh bolete.
2.4 牛肝菌食用安全评估
2.4.1 As污染指数
根据GB2762-2012规定的食用菌及其制品中As限量标准(As≤0.5 mg·kg-1)及牛肝菌样品的As含量计算牛肝菌的As的污染指数;一般认为污染指数大于1,则样品处于重污染水平。由表4可知,牛肝菌菌盖、菌柄的As污染指数在0.35~26.66及0.12~34.20之间;80%以上牛肝菌的As污染指数大于1,表明多数牛肝菌处于重污染水平,其中采自昆明五华区的灰疣柄牛肝菌菌盖、菌柄的As含量是分别是GB2762-2012规定的食用菌As限量标准的26.66倍和34.20倍,As超标严重。
2.4.2 每周允许摄入量(PTWI)
FAO/WHO规定每周As允许摄入量应≤0.015 mg·kg-1body weight (bw)[26]。以成年人平均体重60 kg计算,则每人一周允许摄入的As为:60 kg×0.015 mg·kg-1=0.9 mg。假设成年人每周食用500 g新鲜牛肝菌,则通过牛肝菌摄入的As为:500×10%×牛肝菌的As含量(其中10%为牛肝菌干重约占其总质量的比例)。
由表4可知成年人每周食用500 g新鲜牛肝菌菌盖或菌柄,摄入的As分别在0.01~0.67 mg和0.003~0.85 mg之间。与PTWI标准(As≤0.9 mg)相比,通过食用500 g新鲜牛肝菌摄入的As均低于PTWI标准;然而食用500 g采自昆明五华区的灰疣柄牛肝菌摄入的As与PTWI标准十分接近,同时日常生活中人们还通过其他食物摄入As元素,因此,为了防止As暴露危害人体健康,不宜大量或长期食用灰疣柄牛肝菌。
采用ICP-AES法测定了云南不同地区、种类牛肝菌中As元素含量,结果显示不同产地、种类牛肝菌中As含量差异明显,菌盖、菌柄的As平均含量分别在:(0.18±0.31)~(13.33±2.21) mg·kg-1dw和(0.06±0.10)~(17.09±5.8) mg·kg-1dw之间;同一居群不同牛肝菌子实体之间的As含量也存在差异,表明牛肝菌对As元素的富集程度不仅与牛肝菌种类、生长环境等因素有关,还与牛肝菌的生长阶段、子实体大小等自身因素有关。
根据GB 2762-2012规定的食用菌As限量标准计算牛肝菌的As污染指数,结果显示多数牛肝菌的As污染指数大于1,其中采自昆明五华区的灰疣柄牛肝菌菌盖、菌柄的As污染指数分别为26.66和34.20,该牛肝菌As超标严重,处于重污染水平。若成年人每周食用500 g新鲜牛肝菌,则通过牛肝菌摄入的As均低于FAO/WHO规定的PTWI标准(As≤0.9 mg);因此,每周食用500 g新鲜牛肝菌理论上未达到As暴露水平。然而日常生活中人们除了通过食用野生牛肝菌摄入As元素外还会通过其他食物(大米、肉类等)、饮水、呼吸等途径摄入As元素[8-9],因此,为了防止As暴露危害人体健康,不宜大量或长期食用野生牛肝菌。
[1] Kitchin K T. Recent advances in arsenic carcinogenesis:Modes of action, animal model systems, and methylated arsenic metabolites [J]. Toxicology and Applied Pharmacology, 2001, 172(3): 249-261
[2] Qu W, Waalkes M P. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure [J]. Toxicology and Applied Pharmacology, 2015, 282(3): 267-274
[3] 莫小荣, 吴烈善, 邓书庭, 等. 某冶炼厂拆迁场地土壤重金属污染健康风险评价[J]. 生态毒理学报, 2015, 10(4): 235-243
Mo X R, Wu L S, Deng S T, et al. Health risk assessment of heavy metal in soil of demolished smelting site [J]. Asian Journal of Ecotoxicology, 2015, 10(4): 235-243 (in Chinese)
[4] Goldberg S, Manning B A. Speciation of arsenic (III)/arsenic (V) and selenium (IV)/selenium (VI) using coupled ion chromatography-hydride generation atomic absorption spectrometry [J]. Methods in Biogeochemistry of Wetlands, 2013(methodsinbiogeo): 801-814
[5] Jomova K, Jenisova Z, Feszterova M, et al. Arsenic:Toxicity, oxidative stress and human disease [J]. Journal of Applied Toxicology, 2011, 31(2): 95-107
[6] Bundschuh J, Nath B, Bhattacharya P, et al. Arsenic in the human food chain:The Latin American perspective [J]. Science of the Total Environment, 2012, 429: 92-106
[7] Person R J, Ngalame N N O, Makia N L, et al. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells [J]. Toxicology and Applied Pharmacology, 2015, 286(1): 36-43
[8] Jackson B P, Punshon T. Recent advances in the measurement of arsenic, cadmium, and mercury in rice and other foods [J]. Current Environmental Health Reports, 2015, 2(1): 15-24
[9] 肖细元, 陈同斌, 廖晓勇, 等. 我国主要蔬菜和粮油作物的砷含量与砷富集能力比较[J]. 环境科学学报, 2009, 29(2): 291-296
Xiao X Y, Chen T B, Liao X Y, et al. Comparison of concentrations and bioconcentration factors of arsenic in vegetables, grain and oil crops in China [J]. Acta Scientiae Circumstantiae, 2009, 29(2): 291-296 (in Chinese)
[10] Wang X M, Zhang J, Wu L H, et al. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China [J]. Food Chemistry, 2014, 151: 279-285
[12] 温秋林, 陆娟. 北京市消费者食用菌消费行为与消费需求分析[J]. 北方园艺, 2015(14): 197-200
Wen Q L, Lu J. Analysis on consumer behavior and demand of mushroom based on consumers in Beijing [J]. Northern Horticulture, 2015(14): 197-200 (in Chinese)
[13] Cocchi L, Vescovi L, Petrini L E, et al. Heavy metals in edible mushrooms in Italy [J]. Food Chemistry, 2006, 98(2): 277-284
[14] Zhu F, Qu L, Fan W, et al. Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China [J]. Environmental Monitoring and Assessment, 2011, 179(1-4): 191-199
[15] Fang Y, Sun X, Yang W, et al. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China [J]. Food Chemistry, 2014, 147: 147-151
[16] Falandysz J, Zhang J, Wang Y Z, et al. Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: Accumulation, distribution and probable dietary intake [J]. Science of The Total Environment, 2015, 537: 470-478
[17] Wiejak A, Wang Y, Zhang J, et al. Bioconcentration potential and contamination with mercury of pantropical mushroom Macrocybe gigantea [J]. Journal of Environmental Science and Health, Part B, 2014, 49(11): 811-814
[18] Larsen E H, Hansen M, Gössler W. Speciation and health risk considerations of arsenic in the edible mushroom Laccaria amethystina collected from contaminated and uncontaminated locations [J]. Applied Organometallic Chemistry, 1998, 12(4): 285-291
[19] Zhang J, Li T, Yang Y L, et al. Arsenic concentrations and associated health risks in laccaria mushrooms from Yunnan (SW China) [J]. Biological Trace Element Research, 2015, 164(2): 261-266
[20] Liu B, Huang Q, Cai H, et al. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China [J]. Food Chemistry, 2015, 188: 294-300
[21] Stijve T, Vellinga E C, Herrmann A. Arsenic accumulation in some higher fungi [J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 1990, 14(2): 161-166
[22] Zhang J, Liu H, Li S J, et al. Arsenic inedible and medicinal mushrooms from Southwest China [J]. International Journal of Medicinal Mushrooms, 2015, 17(6): 601-605
[23] 黄晨阳, 陈强, 赵永昌, 等. 云南省主要野生食用菌中重金属调查[J]. 中国农业科学, 2010, 43(6): 1198-1203
Huang C Y, Chen Q, Zhao Y C, et al. Investigation on heavy metals of main wild edible mushrooms in Yunnan Province [J]. Scientia Agricultura Sinica, 2010, 43(6): 1198-1203 (in Chinese)
[24] Ayaz F A, Torun H, Colak A, et al. Macro- and microelement contents of fruiting bodies of wild-edible mushrooms growing in the East Black Sea region of Turkey [J]. Food and Nutrition Sciences, 2011, 2(2): 53
[25] Falandysz J, Kojta A K, Jarzyńska G, et al. Mercury in bay bolete (Xerocomus badius): Bioconcentration by fungus and assessment of element intake by humans eating fruiting bodies [J]. Food Additives & Contaminants: Part A, 2012, 29(6): 951-961
[26] JECFA. Joint FAO/WHO Expert committee on food additives. Summary and conclusions [C]. Proceedings of the Seventy-Second Meeting, Rome, Food and Agriculture Organization of the United Nations World Health Organization, 16-25 February 2010
◆
Determination and Food Safety Assessment of Arsenic in Wild-grown Bolete Mushrooms from Yunnan Province
Yang Tianwei1,2, Zhang Ji1,3, Liu Honggao2, Wang Yuanzhong1,3,*
1. Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China 2. College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China 3. Yunnan Technical Center for Quality of Chinese Materia Medica, Kunming 650200, China
In this study the arsenic (As) contents in 26 wild-grown bolete populations from Yunnan Province were determined by ICP-AES. The accumulation characteristics of As in different species of bolete mushrooms from different origins were analyzed. The As pollution level in bolete mushrooms from Yunnan Province was evaluated by single pollution index. The As exposure risk via the wild-grown bolete mushrooms was assessed according to As Provisional Tolerable Weekly Intake (PTWI) recommended by the United Nations Food and Agriculture Organization and the World Health Organization (FAO/WHO). The results showed that (1) there were significant differences in As contents in different species of bolete mushrooms from different origins, and the As content in caps and stipes were in the range of (0.18±0.31)-(13.33±2.21) mg·kg-1dw and (0.06±0.10)-(17.09±5.8) mg·kg-1dw, respectively. It is demonstrated that the bioaccumulation factors of As in bolete mushrooms is related with the growth environment and bolete species. (2) The As pollution index in caps and stipes of bolete mushrooms were between 0.35-26.66 and 0.12-34.2 respectively, and most of the them were greater than 1. It is indicated that the contents of As in most bolete mushrooms exceeded the As standard limit which is prescribed by GB2762-2012 implying that As content in bolete was in heavy pollution. (3) If the adults takes 500 g fresh bolete mushrooms a week, As intakes of all boletes were below the acceptable intake (As≤0.9 mg) without health risk. But in daily life people will take in As by other ways such as other food (rice, meat, and etc.), drinking water and breathing besides bolete mushrooms. Therefore, in order to prevent the harm to human health, the long-term or excessive intake of wild-grown bolete mushrooms was not recommended.
arsenic; wild bolete; health risk; single pollution index; Yunnan
10.7524/AJE.1673-5897.20151116002
国家自然科学基金项目(31260496, 31460538)
杨天伟(1989-),男,硕士研究生,研究方向为野生食用菌资源评价与应用,E-mail: yangtianweizj@126.com
*通讯作者(Corresponding author), E-mail: yzwang1981@126.com
2015-11-16 录用日期:2016-01-02
1673-5897(2016)2-755-07
X171.5
A
简介:王元忠(1981-),男,硕士,助理研究员,主要从事药用植物和药用真菌资源评价和利用研究,发表学术论文190余篇。
杨天伟, 张霁, 刘鸿高, 等. 云南野生牛肝菌中砷元素含量测定及食用安全评价[J]. 生态毒理学报,2016, 11(2): 755-761
Yang T W, Zhang J, Liu H G, et al. Determination and food safety assessment of arsenic in wild-grown bolete mushrooms from Yunnan Province [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 755-761 (in Chinese)