石晔,龙广成,王申,刘巍, 谢友均
(中南大学 土木工程学院,湖南 长沙 410075)
纳米颗粒对超低水胶比复合水泥浆体水化和孔结构的影响
石晔,龙广成,王申,刘巍, 谢友均
(中南大学 土木工程学院,湖南 长沙 410075)
摘要:为掌握纳米颗粒材料对超低水胶比水泥基材料水化与微结构的影响规律,采用热重分析法和BET测孔方法测试分析nano-SiO2,nano-Al2O3,nano-Fe2O3及nano-CaCO34种纳米颗粒对超低水胶比复合水泥浆体结合水含量与孔隙结构的影响,并探讨相应的机理。研究结果表明:相对于普通水泥体系,上述4种纳米颗粒更显著地促进了超低水胶比复合水泥浆体的水化进程,且存在最佳的纳米颗粒掺量,使得超低水胶比浆体28 d龄期的结合水量最大;纳米颗粒可有效改善超低水胶比复合水泥浆体的孔隙结构,降低其总孔隙体积和平均孔径,很好地发挥了纳米尺度充填密实作用。纳米颗粒在制备超低水胶比高性能水泥基材料具有显著的优势。
关键词:纳米颗粒; 超低水胶比复合水泥浆体;水化;孔结构
纳米颗粒材料具有粒径小、比表面积大、表面能高等特点,表现出独特的特性,引起了水泥混凝土材料研究者的广泛兴趣[1-6]。既有研究实践表明,纳米颗粒对水泥基材料水化作用以及宏观性能具有较大的影响,如纳米二氧化硅(nano-SiO2)可促进水泥早期水化作用[7-9],加速C3S的溶解及水化速率[10],缩短凝结时间,这种效应随着纳米颗粒掺量的增加而增强[7,8,11-13],nano-SiO2也表现出较大的活性效应,减少水化产物中的CH的含量[14-16],能有效改善水泥基材料的耐久性[16-20],同时对水泥基材料的强度也有较明显的影响,并随着龄期的延长而发生较大变化[21-25]。一些研究者也调查了分别掺纳米三氧化二铝(nano-Al2O3)、纳米三氧化二铁(nano-Fe2O3)以及纳米碳酸钙(nano-CaCO3)水泥基材料体系的水化过程、强度及微观结构[26-36],结果表明:nano-Al2O3,nano-Fe2O3及nano-CaCO3也可促进水泥基材料的早期水化作用及强度的发展,表现出较明显的水化晶核效应,并对体系微观结构产生较大影响。上述研究实践表明,纳米颗粒可对水泥体系发挥较好的物理化学作用效应,使得其在水泥基材料中有较好的应用潜力。然而,现有的研究主要是针对水胶比相对较大的普通水泥材料体系,而且相关研究还基本处于初级探索研究阶段,特别是针对上述纳米颗粒在非常低水胶比的超高(强)性能水泥基材料,如活性粉末混凝土(Reactive Powder Concrete)中的作用效应的研究还鲜见报道[34,37-38]。基于上述,本文通过试验手段,探讨了nano-SiO2,nano-Al2O3,nano-Fe2O3及nano-CaCO34种常见的纳米颗粒对超低水胶比复合水泥浆体水化进程及孔隙结构的影响,为利用纳米技术制备超高性能水泥基材料提供一定的技术支持。
1试验简介
1.1原材料
试验采用的复合水泥浆体主要包括了水泥(PC)、粉煤灰(FA)、硅灰(SF)等组份。水泥为湖南东坪水泥有限公司生产的P.O 42.5水泥,粉煤灰为I级低钙灰,硅灰为上海艾肯公司提供。水泥、粉煤灰和硅灰的化学组成见表1所示,其各自粒径分布曲线如图1所示。试验采用了nano-SiO2(NS),nano-Al2O3(NA),nano-Fe2O3(NF)及nano-CaCO3(NC) 4种纳米颗粒,均为杭州万景新材料生产提供,其基本性质如表2所示。超塑化剂(SP)为安徽中铁材料公司提供的减水率为26 %的聚羧酸高效减水剂,拌合水(W)为饮用自来水。
表1所用水泥、粉煤灰和硅灰的化学组成及烧失量
Table 1 Chemical compositions and ignition loss of cement, fly ash and silica fume
(by wt / %)
表2 纳米颗粒的基本性质
图1 粒径分布曲线Fig.1 Particle size distribution of cement, fly ash and silica fume
1.2试验配合比
为掌握上述4种纳米颗粒对超低水胶比复合水泥浆体水化进程和孔隙结构的影响,试验采用如表3所示的基准复合水泥浆体组成配比,在此基础上分别外掺水泥质量0~3 %的不同纳米颗粒制备测试试样,表中水胶比为水与胶凝材料(水泥、粉煤灰、硅灰及纳米颗粒)总量之比,超塑化剂(SP)掺量以胶凝材料总质量计,超塑化剂中的水计算在水胶比中。
1.3试件的制备、养护及试验方法
各试样采用胶砂搅拌机进行拌合,按以下程序进行试样混合搅拌,首先将水泥、粉煤灰、硅灰以及纳米颗粒添加至搅拌锅内,缓慢搅拌120 s将干燥状态粉体混合物拌合均匀,然后徐徐加水和减水剂慢搅180 s,然后快速搅拌120 s,至拌合均匀。采用40 mm×40 mm×160 mm的不锈钢试模成型,成型后立即用塑料薄膜覆盖,并置于20 ℃室内,各试件于成型1 d后拆模,放入(20±2) ℃水中养护至指定龄期。在相应龄期,对试样进行破碎和终止水化处理以备测试。热分析委托中南大学材料学院采用NETZSCH-STA449C差热分析仪进行测试,升温速率为10 ℃/min,最高温度为1 000 ℃,以105 ℃~1 000 ℃之间的失重为基准计算相应的结合水量。试样孔结构分析采用氮吸附方法(BET)测试,委托中南大学粉末冶金国家重点实验室进行测试。试样的比表面积采用BET方法分析得到,总的孔隙体积、孔径分布采用解吸等温线数据按BJH分析方法得到[39]。
表3 基准试样和掺纳米颗粒试样配比
2实验结果和分析
2.1纳米颗粒对试样水化进程的影响
水化作用攸关水泥基材料微结构形成和性能发展。如前所述,纳米颗粒对水泥体系水化作用的影响已有一些研究者进行了探索[7-9,30,34]。为进一步分析纳米颗粒对超低水胶比复合浆体水化进程的影响,本试验研究了龄期和纳米颗粒掺量对各试样结合水含量的影响,试样结果如表4和图2所示。
表4基准试样和掺1 %纳米颗粒试样的化学结合水随龄期变化结果
Table 4 Non-evaporable water content of specimens without and with 1% nanoparticles
(%)
从表4中给出的基准试样(control)和分别掺1 % NS,NC,NA和NF4种纳米颗粒净浆试样在3 ,7和28 d龄期时的化学结合水含量测试结果可以得知,所调查NS,NC,NA和NF四种纳米颗粒对体系水化作用均呈现出较大的影响效应。在3 d龄期时,分别掺NS,NC,NA和NF试样的结合水含量均显著高于基准试样,表现出明显的加速水化效应,其中NS和NA对水化作用的促进作用最为明显,结合水含量较基准组分别提升了45 %和36 %,而NC和NF对水化的促进作用则稍弱,仅为12 %和15 %;在7 d及28 d龄期时,分别掺NS,NC,NA和NF试样的结合水含量也均高于基准试样;而且比较各试样的结合水含量还可得知,相对于3 d龄期,在7 d龄期和28 d龄期时,纳米颗粒对体系水化促进作用的速率减弱。这些结果表明,NS,NC,NA和NF 4 种纳米颗粒能够较好地促进28 d龄期内超低水胶比复合水泥浆体的水化进程,尤其是显著加速了3 d龄期内的水化作用。同时,对比MADANI H[8],Hou Pengkun等[4]关于掺NS的水灰比为0.4~0.27水泥体系的结合水含量的研究结果,可以发现纳米颗粒NS对超低水胶比水泥体系的水化作用影响更为显著,特别是早期的促进作用更加显著。
纳米颗粒对水泥早期水泥促进作用一般认为是纳米颗粒提供了C-S-H凝胶的成核场所[24,35],且这种加速效果取决于比表面积的大小。显然,在超低水胶比水泥混合体系中,颗粒之间的水膜层厚度非常小,颗粒之间的距离缩短,纳米颗粒将更易于发挥其晶核效应,促进水化作用也更为显著;同时,从所测结合水含量来看,相对于纳米碳酸钙颗粒和纳米三氧化二铁,纳米二氧化硅、纳米三氧化二铝的活性效应也进一步促进了该复合水泥体系的早期水化作用,相应试样结合水含量更多。
进一步从图2给出的纳米颗粒掺量对体系28 d龄期结合水含量的结果可以发现,随着纳米颗粒掺量的增加,试样的结合水含量先增加,然后又呈现缓慢的下降,而且分别掺4种纳米颗粒的试样均表现出相似的规律,在本试验条件下,4种纳米颗粒掺量均为水泥质量的2 %时,相应试样的结合水量达到最大。这表明,存在最佳的纳米颗粒掺量,使得体系水化程度最佳。这很可能是由于,在超低水胶比水泥体系有限自由水量的情况下,此掺量条件最佳发挥了纳米颗粒的促进水化作用效应,从而使得相应的结合水含量最多。
2.2纳米颗粒对试样孔隙结构的影响
表5和表6分别给出了基准试样和分别掺1 %NS,1 %NC,1 %NA及1 %NF试样28 d龄期条件下的孔隙结构参数测试结果。从表5中的结果可知,分别掺1 %的NS,NC和NA 3种纳米颗粒试样的总孔体积以及平均孔径都小于基准试样,孔隙比表面积也大于基准试样;掺1%NF试样的总孔体积也显著小于基准试样,但其孔隙比表面积却稍小于基准试样,这可能主要是由于NF几何形貌等原因造成试样孔隙平均直径及内部结构无显著变化而导致。从上可知,纳米颗粒掺入后,有效降低了试样的总孔隙体积,较基准试样降低达15 %。
图2 纳米颗粒掺量对28 d龄期各浆体试样结合水含量的影响Fig.2 Influence of content of nanoparticles on chemically bound water of samples
进一步从表6中给出的各试样的孔径分布结果可以看到,各试样的孔径均处于200 nm以内,基准试样和掺纳米颗粒试样的各孔径的分布存在明显的不同。相对于基准试样,掺纳米颗粒试样孔径大于50 nm 的孔隙数量显著减小,而孔径小于50 nm的孔隙数量增多,因此,尽管掺纳米颗粒后试样的总孔体积降低,但由于小孔径的孔数量增多,从而使得其孔隙比表面积较大。从所测孔隙结构结果表明,纳米颗粒掺入后进一步细化了超低水胶比复合水泥浆体的孔隙结构,降低了总孔隙率,较好地发挥了其纳米填充效应,从而进一步增强体系的宏观性能。同时,上述结果亦表明,不同的纳米颗粒对试样孔隙结构的影响也存在不同,NS和NA具有更高的化学活性,更为显著的减小了试样的孔隙率;另外,纳米颗粒本身的颗粒大小、形貌等也对试样的孔隙结构存在一定影响。
表5 基准试样和分别掺1 %纳米颗粒试样的孔结构参数结果
表6基准试样和分别掺1 %纳米颗粒试样的孔径分布结果
Table 6 Pore distribution of specimens without and with 1% nanoparticles
controlNSNCNANF<10nm(%)12.816.214.315.614.010-50nm(%)41.063.255.257.747.850-200nm(%)46.220.730.526.838.2
3结论
1)纳米SiO2、纳米CaCO3、纳米Al2O3和纳米Fe2O3掺入可有效增加超低水胶比复合水泥浆体的结合水量,特别是可显著提高试样3 d龄期的结合水量,且活性的纳米SiO2、纳米Al2O3对提高试样结合水量比纳米CaCO3、纳米Fe2O3更为显著。相对于普通水泥体系,上述纳米颗粒更为显著地促进了超低水胶比复合水泥浆体的水化作用。
2)纳米颗粒掺量对试样水化进程存在较大影响。所测4种纳米颗粒掺量均为水泥质量的2 %左右时,分别使得超低水胶比浆体28 d龄期的结合水量最大。
3)纳米颗粒可有效改善超低水胶比复合水泥浆体的孔隙结构,降低总孔隙体积和平均孔径,显著发挥了纳米尺度充填密实作用;其中,相对于纳米CaCO3和纳米Fe2O3,纳米SiO2与纳米Al2O3更能有效细化超低水胶比复合水泥浆体的孔径并降低其总孔隙率。
参考文献:
[1] RASHAD A M. Effects of ZnO2, ZrO2, Cu2O3, CuO, CaCO3, SF, FA, cement and geothermal silica waste nanoparticles on properties of cementitious materials A short guide for Civil Engineer [J]. Construction and Building Materials, 2013, 48(11):1120-1133.
[2] RASHAD A M. A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4and nano-clay on some properties of cementitious materials A short guide for Civil Engineer[J]. Materials and Design, 2013, 52(24):143-157.
[3] SINGH L P, KARADE S R, BHATTACHARYYA S K, YOUSUF M M and AHALAWAT S. Beneficial role of nanosilica in cement based materials A review[J]. Construction and Building Materials, 2013, 47(5):1069-1077.
[4] HOU Pengkun, Kawashima S, KONG Deyu, et al. Modification effects of colloidal nano-SiO2on cement hydration and its gel property [J]. Composites: Part B, 2013, 45(1):440-448.
[5] 熊国宣,邓敏,宋碧涛,等. 纳米材料在混凝土中应用的思考[J]. 混凝土与水泥制品,2002,05:18-21.
XIONG Guoxuan, DENG Min, SONG Bitao, et al. Thinking about the application of nanomaterials in concrete [J]. China Concrete Cement Products, 2002, 05:18-21.
[6] 侯学彪,黄丹,王委. 掺纳米SiO2高性能混凝土研究进展[J].混凝土,2013(3):5-9.
HOU Xuebiao, HUANG Dan, WANG Wei. Research progress on high performance concrete with nano-SiO2[J]. Concrete, 2013 (3):5-9.
[7] Ltifa M, Guefrechb A, Mounangad P. Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars [J]. Procedia Engineering, 2011(10):900-905.
[8] Madani H, Bagheri A Parhizkar T. The pozzolanic reactivity of mono-dispersed nano-silica hydrosols and their influence on the hydration characteristics of portland cement [J]. Cement and Concrete Research, 2012, 42(12):1563-1570.
[9] JO B W, KIM C H, LIM J H. Investigations on the development of powder concrete with nano-SiO2particles [J]. KSCE J Civil Engineering, 2007, 11(1):37-42.
[10]Bjornstrom J, Martinelli A, Matic A. Accelerating effects of colloidal nano-silica for beneficial calcium silicate hydrate formation in cement[J]. Chemical Physics Letters, 2004, 392(1):242-248.
[11] Singh L P, Bhattacharyya S K, Ahalawat P S. Granulometric synthesis and characterization of dispersed nanosilica powder and its application in cementitious system [J]. Advances in Applied Ceramics, 2012, 111(4):220-227.
[12] SINGH L P, AHALAWAT S. Preparation of size controlled silica nano-particles and its functional role in cementitious system [J]. Journal of Advanced Concrete Technology,2012, 10(11):345-352.
[13] SINGH L P, AGARWAL S K, BHATTACHARYYA S K, et al. Preparation of silica nano-particles and its beneficial role in cementitious materials [J].Nanomaterials Nanotechnologe, 2011,1(1):44-51.
[14] JO B W, KIM C H, TAE G H, et al. Characteristics of cement mortar with nano-SiO2particles [J]. Construction and Building Materials, 2007, 21(4):1351-1355.
[15] KONTOLENTOS F., TSAKIRIDIS P E, MARINOS A, et al. Influence of colloidal nano-silica on ultrafine cement hydration: physicochemical and microstructural characterization [J]. Construction and Building Material, 2012, 35(10):347-360.
[16] KONG Deyu, DU Xiangfei, WEI Su, et al. Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials [J]. Construction and Building Material, 2012, 37(3):707-715.
[17] GIVI A N, RASHID S A, AZIZ F N A, et al. Investigations on the permeability properties development of binary blended concrete with nano-SiO2particles [J]. Journal of Composites Materials, 2010, 45(19):1931-1938.
[18] GIVI A N, RASHID S A, AZIZ F N A, et al. The effects of lime solution on the properties of SiO2nanoparticles binary blended concrete [J]. Composites part: B, 2011, 42(3):562-569.
[19] ZHANG Maohua, LI Hui. Pore structure and chloride permeability of concrete containing nano-particles for pavement [J]. Construction Building Materials, 2011, 25(2):608-616.
[20] SHAMSAI A, PEROTI S, RAHMANI K, et al. Effect of water-cement ratio on abrasive strength, porosity and permeability of nano-silica concrete [J]. World Applied Sciences Journal, 2012, 7(8):929-933.
[21] STEFANIDOU M, PAPAYIANNI I. Influence of nano-SiO2on the Portland cement pastes [J]. Composites Part B, 2012, 43(6):2706-2710.
[22] QUERCIA G, HUSKEN G, BROUWERS H J H. Water demand of amorphous nano silica and its impact on the workability of cement paste [J]. Cement and Concrete Research, 2012, 42(2):344-357.
[23] HOU Pengkun, WANG Kejin, QIAN Jueshi, et al. Effects of colloidal nano-SiO2on fly ash hydration [J]. Cement and Concrete Composites, 2012, 34(10):1095-1103.
[24] KAWASHIMA S, HOU Pengkun, CORR D J, et al. Modification of cement-based materials with nanoparticles [J]. Cement and Concrete Composites, 2012, 36(1):8-15.
[25] LIN D F, LIN K L, CHANG W C, LUO H L, et al. Improvements of nano-SiO2on sludge/fly ash mortar [J]. Waste Management, 2008, 28(6):1081-1087.
[26] AREFI M R, JAVERI M R, MOLLAAHMADI E. To study the effect of adding Al2O3nanoparticles on the mechanical properties and microstructure of cement mortar [J]. Life Science Journal, 2011, 8(4):613-617.
[27] LI Zhenhua, WANG Huafeng, HE Shan, et al. Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite[J]. Materials Letters, 2006, 60(3):356-359.
[28] CAMPILLO I, GUERRERO A, DOLADO J S, PORRO A, et al. Improvement of initial mechanical strength by nano alumina in belite cements [J]. Materials Letters, 2007, 61(8):1889-1892.
[29] OLTULU M, SAHIN R. Single and combined effects of nano-SiO2, nano-Al2O3and nano-Fe2O3powders on compressive strength and capillary permeability of cement mortar containing silica fume [J]. Journal of Materials Science & Technology, 2011, 528(22):7012-7019.
[30] KHOSHAKHLAGH A, NAZARI A, KHALAJ G. Effects of Fe2O3nanoparticles on water permeability and strength assessments of high strength self-compacting concrete [J]. Journal of Materials Science & Technology, 2012, 28(1):73-82.
[31] NAZARI A, RIAHI S, RIAHI S, et al. The effects of incorporation Fe2O3nanoparticles on tensile and flexural strength of concrete [J]. Journal of American Science. 2010, 6(4):90-93.
[32] LI Hui, XIAO Huigang, OU Jinping. A study on mechanical and pressure sensitive properties of cement mortar with nano phase materials [J]. Cement and Concrete Research, 2004, 34(3):435-438.
[33] NAZARI A, RIAHI S. Computer-aided design of the effects of Fe2O3nanoparticles on split tensile strength and water permeability of high strength concrete [J]. Materials and Design, 2011, 32(7): 3966-3979.
[34] CAMILETTI J, SOLIMAN A M, NEHDI M L. Effects of nano-and micro-limestone addition on early-age properties of ultra-high-performance concrete [J]. Materials & Structures, 2013, 46(6):881-898.
[35] LI Hui, XIAO Huigang, YUAN Jie, et al. Microstructure of cement mortar with nanoparticles [J]. Composites part B, 2004, 35(3):185-189.
[36] 李固华,高波. 纳米微粉SiO2和CaCO3对混凝土性能影响[J].铁道学报, 2006,28(1):131-136.
LI Guhua, GAO Bo. The influence of nano-SiO2and nano-CaCO3on properties of concrete [J]. J Chin Rail Society, 2006, 28(1): 131-136
[37] 龙广成,谢友均,王培铭,等.活性粉末混凝土的性能与微细观结构[J].硅酸盐学报,2005, 32(4):456-461.
LONG Guangcheng, XIE Youjun, WANG Peiming, et al. The properties and meco/microstructure of reactive powder concrete [J]. J Chin Ceram Soc, 2005, 32(4): 456-461.
[38] YU R, SPIESZ P, BROUWERS H J H. Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount [J]. Construction and Building Materials, 2014, 65(9):140-150.
[39] JUENGER M C G, JENNINGS H M. The use of nitrogen adsorption to assess the microstructure of cement paste [J]. Cement and Concrete Research, 2001, 31(01): 883-892
Influence of nano-particles on hydration and pore structure of compounded paste with very low water-binder ratio
SHI Ye, LONG Guangcheng, WANG Shen, LIU Wei, XIE Youjun
(School of Civil Engineering, Central South University, Changsha 410075, China)
Abstract:For the sake of understanding the effects of nanoparticles on hydration and microstructure of cement-based materials with very low water to binder ration, the chemically bound water and pore structure of cement paste with very low water-binder ratio incorporating four nanoparticles of nano-SiO2, nano-Al2O3, nano-Fe2O3 and nano-CaCO3 were investigated by TG and BET experimental methods, respectively. Results show that the incorporation of aforementioned nano-particles plays more significant role in promoting the hydration process of paste with very low water to binder ratio as compared to the ordinary cement paste. Due to the nano-scale filling role, the porosity and average pore diameter of samples can be reduced by adding nanoparticles. It proves obvious advantage in preparing high performance cement-based materials with very low water to binder ratio by utilizing nanoparticles.
Key words:nano-particles; compounded cement paste with very low water-binder ratio; hydration; pore structure
收稿日期:2015-10-22
基金项目:国家重点基础研究发展计划(973计划)项目(2013CB036201);国家自然科学基金资助项目(51178467)
通讯作者:龙广成(1973-),男,江西万载人,教授,博士,从事先进水泥基材料研究;E-mail:scc2005@csu.edu.cn
中图分类号:TU528
文献标志码:A
文章编号:1672-7029(2016)05-0836-06