成爻兵
全国著名特级教师李庾南老师 “自学·议论·引导”教学法中指出“以学生为主体,在师生合作中学会学习,让学生学会自主发展”.在实施过程中遵循基本规则:学法三结合(个人学习、小组学习、全班学习),学材再建构(源于教材、高于教材、单元教学),学程重生成(师生互动、生生互动、深度交流),这是新课标精神的实质与精髓,是素质教育途径的最好探索.笔者近期有幸参加李庾南实验学校的优课评比,依据“三学”原则执教了《平行线》一课,现将体会与同行分享.
一、感受新知,认识概念
学生欣赏一组有关平行线的图片,主要有笔直的马路,多幢笔直的高楼,双杠,铁轨,跑道线,雪橇,整齐的教室课桌椅,整齐的做操队列……
教师:请大家欣赏、观察、思考、寻找平行线的形象,凭借小学对平行线的认识,展示的图片中哪些具有平行线的形象?找出以上几幅图中的平行线.
学生1:一组马路的斑马线,高楼的边缘线,双杠中两根杠子的延长线,铁轨的边缘线……
教师:平行线具有什么特征?在生活中有哪些可以看做平行的生活实例.
学生2:学生进行想象,滑雪板、正方体中的一些棱、运动跑道,等等.
教师:通过对平行线的感受,什么叫做平行线?请带着问题小组一起探讨下面问题.
问题展示:如图1,分别将木条a、b与木条c钉在一起,并把它们想象成两端可以无限延伸的三条直线.转动a,直线a从在c的左侧与直线b相交逐步变为在c的右侧与b相交.想象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?
设计意图:充分发挥学生的想象能力,把三个木条想象成三条直线,想象在转动过程中不相交的情况,进而描述两直线平行的定义.
教师活动:教师演示教具,并在学生想象、描述的基础上引导学生进行归纳.
教师:你们现在能说出平行线的定义吗?
众生:在同一平面内,若直线a和b不相交,那么就称直线a和b平行,记作a∥b.(板书课题“平行线”)
二、师生互议,建构概念
教师:一个长方体如图3,和AA1平行的棱有多少条?和AB平行的棱有多少条?A1B1与BC所在的直线是两条不相交的直线,他们平行吗?
学生活动:独立思考后展示,初步感受空间两条直线的位置关系,强化对定义中“同一平面”的认识.
教师活动:引导学生对定义的强化.
辩一辩:(1)不相交的两条直线是平行线;(2)在同一平面内两条直线的位置关系有相交、垂直、平行;(3)在同一平面内不相交的两条线段平行; (4)在同一平面内不相交的两条射线是平行线;(5)在同一平面内不相交的两直线是平行线;(6)同一平面内,两直线位置关系有两种,即相交或平行.
学生活动:独立思考后进行交流,代表发言,进一步理解定义中“两条直线”的关系.
教师活动:引导思考,强化定义.
教师:如何表示平行线?
学生活动:类比所学的几何知识,直线可以怎么表示?从而得出两种表示的方法.
教师活动:引导、帮助.
三、巩固训练,运用概念
画一画:
(1)在活动木条a的过程中,有几个位置使得 a与b平行?
(2)经过直线a外一点B画直线a的平行线,你能有几种方法?可以画几条?经过点C呢?
学生活动:小组交流,你是怎么画的?有哪些方法?通过画平行线你发现了什么?
教师活动:如何画?指导学生在方格纸纸中,用三角板、直尺等工具画.
说一说:已知三条直线AB、CD、EF.如果AB∥EF ,CD∥EF,那么直线AB与CD可能相交吗?说说你的理由.
学生活动:独立思考并讨论得出结论,初步感受反证法.
教师活动:帮助学生说出过程.
练一练:(1)已知a∥b,b∥c,则________________________________________.
(2)已知a∥b,b∥c,c∥d,则________________________________________.
设计意图:及时巩固平行线的基本性质.
议一议:在同一平面内有3条直线,问可以把这个平面分成几部分?如果在同一平面内有4条直线呢?
学生活动:分组探究,小组讨论,发现问题,小组讨论解决,在学生研究结束后,每小组派一名代表进行交流,交流完成后完善自己的结果.
学生经过探究可以发现:(1)当4条直线两两平行时,可以把平面分成5部分;(2)当4条直线中只有三条两两平行时,可以把平面分成8部分;(3)当4条直线仅有两条互相平行时,可以把整个平面分成9部分或10部分;(4)当4条直线中其中两条平行,另两条也平行时,可以把平面分成9部分;(5)当4条直线任意两条都不平行时,可以把平面分成8或10或11部分.
设计意图:本环节主要考查学生探究问题的能力,同时培养学生的合作与交流意识,在探究的过程中教师可以适当引导学生按一定的条件分类,比如按平行线的条数分或按交点的个数分类,让学生养成有序考虑问题的习惯.
四、总结归纳,反思提炼
思一思:(1)今天你学到哪些知识?(2)今天你积累了哪些学习方法?(3)今天你在小组合作中的表现如何?
五、延伸课后,作业布置
1.探究同一平面内n条直线最少可以把平面分成几部分?最多可以把平面分成几部分?
2.习题5.2 第6、7、9题.
教后反思 本节课是一节概念教学课,从学生小学中对平行线的认识和生活中的平行线出发,选择合适的问题切入,创设问题,让学生从感受到认识,从概括到抽象,牢固形成概念,并对空间中的平行线进行认识.通过“辩一辩”、 “画一画”、 “说一说”、“练一练”、“议一议”等活动,让学生动手、动口、动脑,在认识概念的同时,积累学习经验和方法,发展学力.