殷鸿波,邓应平
(四川大学华西医院眼科,四川成都 610041)
角膜生物力学特性的研究进展
殷鸿波,邓应平
(四川大学华西医院眼科,四川成都 610041)
所谓生物力学,是指在分子、细胞、组织、器官或整体水平将力学原理应用于生物学[1]。具体而言,即发展、延伸和应用力学知识以更好地理解疾病和创伤的生理和病理生理过程及其诊断、治疗和预后。目前,生物力学已经在心血管疾病、整形和康复等领域成功实现了临床转化,如治疗血管瘤和动脉硬化的血管支架、治疗心脏瓣膜疾病的人工心脏瓣膜以及治疗骨关节炎的人工膝关节等[2]。遗憾的是,眼球及其附属器通常被认为是一个光学而非机械力学系统,因此,生物力学在眼科领域的研究和应用相当有限。近年来,角膜、巩膜和筛板[2]、虹膜[3]和小梁网[4]、玻璃体[5]以及晶状体[6]等的生物力学特性开始被关注,尤其是角膜生物力学(corneal biomechanical properties,CBPs)与多种眼部疾病的关系成为研究的热点。
角膜位于眼球最外层,是光线传输的高度特殊组织,提供眼球2/3的屈光力,它还可以保护眼内容物免受外界物质的干扰和抵御眼内外压力。这种光学和屏障作用有赖于角膜正常形态的维持,微小的变化都将影响其功能。事实上,角膜承受着来自眼内外的多重负荷,如眼睑运动、眼外肌牵拉、眼压等,因具有独特的生物力学特性才不至于丧失其正常形态,而这种特性是以角膜的成分和结构为基础的。角膜具有五层解剖结构,其中,基质层占角膜厚度的90%,也是决定角膜透明度和生物力学特性的关键。角膜基质包含250~400层高度有序、层叠排列的胶原纤维板层,每层由直径相同、同向排列的胶原纤维束组成,层间有薄而扁平的角膜基质细胞[7],蛋白多糖存在于胶原纤维之间以及纤维板层之间充当粘合剂[8]。胶原纤维在角膜基质中的分布具有异向性,由所在位置和深度决定,如前部基质的胶原纤维板层较中后部而言排列更加致密、层间交织更多[9]。如果说角膜基质胶原赋予角膜弹性,那么角膜基质80%的含水量则赋予角膜粘性,这种独特的粘弹性使角膜受应力作用时,即刻产生弹性反应,随后产生延迟的、时间依赖的粘性反应,即角膜迟滞现象[10]。角膜生物力学特性受年龄、种族、性激素水平等多种因素影响,如随年龄增长,角膜胶原自发交联,角膜硬度增加[11];女性怀孕期间或月经周期的不同阶段,性激素水平波动,角膜生物力学特性亦发生相应改变[12]。我中心曾对一批健康育龄期女性志愿者进行观察,发现其角膜生物力学特性随雌激素水平变化而变化,排卵期雌激素水平达到峰值而角膜硬度最低。
最初对角膜生物力学特性的测量采用离体方法,从全息干涉技术[13-14]到电子散斑干涉技术再到径向剪切散斑干涉技术[15]。尽管这些测量方法可将离体角膜组织暴露于各种负荷条件下,从而获得一系列力学参数,但是样本制作可能破坏角膜胶原的自然走行,加之测量过程中角膜脱水,导致测量结果与真实值存在差异。目前市售的活体角膜生物力学测量仪包括眼反应分析仪 (ORA)和动态角膜地形图(CORVIS ST)。眼反应分析仪监测受空气脉冲作用后角膜形变和恢复的动态过程,获得角膜迟滞性(corneal hysteresis,CH)和角膜阻力因子(corneal resistance factor,CRF)两个力学参数[16]。在这一过程中,角膜第一次被压平时测得的眼压为P1,第二次被压平时为P2,两者之间的差异即为CH,代表了角膜粘性阻力所致的能量损失。CRF通过线性公式计算所得,理论上可代表角膜弹性,但是CH与角膜弹性模量并没有直接关系[17]。在正常眼,CH波动于9.3±1.4~11.4±1.5 mmHg,CRF波动于9.2±1.4~11.9±1.5 mmHg。近年来,研究人员开始对采集的红外线信号曲线和压力信号曲线进行分析,获得了一系列新的参数[18-19],联合CH和CRF,拓展了眼反应分析仪临床应用。动态角膜地形图集成了角膜地形图、非接触式眼压计和高速照相系统,记录受空气脉冲作用后角膜形变和恢复的影像,可提供角膜形变幅度以及两次被压平出现的时间、长度和速率等力学参数[20],其中角膜的形变幅度和第一次被压平出现的时间可重复性好且最具临床意义。目前,还有一些活体测量角膜生物力学特性的新技术正在研究当中,将来可能应用于临床,包括超声剪切成像技术[21]、光学相干弹性成像技术[22]以及Brillouin光散射显微镜技术[23]等。
2.1 角膜生物力学与角膜扩张性疾病
随着对角膜生物力学认识的深入和活体测量方法的改进,人们日渐意识到角膜生物力学的重要性并开始研究其与多种眼部疾病的关系。其中,角膜生物力学特性在扩张性角膜疾病中的应用是最早且最成功的例子。扩张性角膜疾病,包括圆锥角膜和屈光手术后角膜扩张,其角膜基质胶原排列紊乱、前弹力层断裂、胶原在前弹力层的锚定缺失直接导致角膜硬度降低和板层滑动[24-25],最终表现为角膜进行性变薄、前突和视力下降。利用眼反应分析仪比较正常角膜和圆锥角膜的生物力学特性,发现后者的CH和CRF显著下降[16,26-28],且降幅与疾病严重程度相关[28]。然而,对于轻型或隐匿型圆锥角膜,这两个力学参数的敏感性和特异性较低[29],如联合对信号和压力曲线的分析,则敏感性和特异性提高,可用于圆锥角膜的早期诊断[19,30]。角膜胶原交联(corneal cross-linking,CXL)是治疗扩张性角膜疾病最具前景的措施之一,通过光化学反应促进角膜胶原之间和胶原板层之间发生交联,可直接改善角膜生物力学特性,进而降低角膜曲率和高阶像差。多项临床研究结果显示,圆锥角膜经过胶原交联后其CRF可短期升高[31-33],以圆锥为中心的小范围交联效果优于角膜中央9 mm区域的交联[34]。眼反应分析仪信号和压力曲线分析[35]或动态角膜地形图检测[36]的结果较CRF重复性好,能更准确地评价治疗效果和监测疾病进展。角膜生物力学特性在扩张性角膜疾病患者中呈现明显的个体差异,在同一角膜呈不对称分布,因此,研究人员采用有限元模型预测特定患者对不同屈光手术方式[37]或交联方案[38-39]的角膜生物力学反应,使未来开展扩张性角膜疾病的个体化诊断和治疗成为可能。
2.2 角膜生物力学与眼压测量
角膜屈光手术是矫正近视、远视或散光的手段之一,仅2010年,全世界范围内就开展了800 000例手术。然而,屈光手术后发生青光眼并导致永久视功能损伤的病例屡见不鲜[40],因此有必要长期监测患者眼压,尤其是高危人群,如有青光眼家族史、薄角膜和高度近视等。遗憾的是,目前临床最常用的Goldmann压平式眼压计 (goldmann applanation tonometry,GAT)往往低估了术后眼压[41],因为术后角膜厚度、形态和生物力学特性改变,而GAT测量值与这些角膜特征密切相关,尤其是角膜生物力学特性[42-43]。眼反应分析仪和动态角膜地形图不仅可以测量角膜生物力学特性,同时也是非接触压平式眼压计,且眼压测量值不依赖角膜厚度和生物力学特性。研究发现,利用眼反应分析仪测量的术前术后眼压变化值明显低于GAT测量的变化值且与CH和CRF密切相关[44],动态角膜地形图测量的术前术后眼压值也较GAT测量值稳定[41]。有趣的是,有角膜屈光手术史的青光眼患者和没有手术史的青光眼患者对降眼压的药物反应相同[45]。
2.3 角膜生物力学与眼部其它结构力学相关性
有大量的研究探索角膜与眼球其它结构在生物力学方面的相关性,如巩膜、视神经头等。巩膜和角膜共同组成了眼球的纤维结缔组织外壳,维持眼球的正常形态。当这个整合系统中某部分的生物力学特性改变,则会引起另一部分的相应改变。角膜迟滞性低则巩膜可能轴向延长,形成或加深近视[46],因此,对儿童进行常规角膜生物力学特性筛查有助于预测发生轴性近视的风险。视神经头是后部巩膜的组成部分,研究发现低CH伴随深视杯、大杯盘比[47]和视盘小凹的形成[48],CH与盘沿面积、神经纤维层厚度成正比,与杯盘比成反比[49]。视神经头的这些形态学改变可能因为眼压升高时,高CH患者的筛板容易变形,变形过程中分散了机械力,从而保护了视网膜神经纤维,反之,则造成视神经的损伤。研究还比较了正常眼和多种类型青光眼患者的角膜生物力学特性,发现原发性开角型[50]、原发性闭角型[51]、正常眼压性[52]、假性剥脱性[53]和先天性[54]青光眼患者的CH较正常眼低,与疾病严重程度成正比[55],且能够预测疾病进展的风险[56]。
总之,生物力学在多种眼科疾病的发生和发展过程中发挥重要作用,近年来,除角膜外,关于虹膜、小梁网、晶状体等的生物力学研究也取得了长足进展。眼科医生应重视生物力学,和基础研究人员相互合作,实现其从实验室向临床应用的转化,造福眼病患者。
1.Hatze H.Letter:The meaning of the term“biomechanics”[J]. J Biomech,1974,7(2):189-190.
2.Girard MJ,Dupps WJ,Baskaran M,et al.Translating ocular biomechanics into clinical practice:current state and future prospects[J].Curr Eye Res,2015,40(1):1-18.
3.Amini R,Whitcomb JE,Al-Qaisi MK,et al.The posterior location of the dilator muscle induces anterior iris bowing during dilation,even in the absence of pupillary block[J].Invest Ophthalmol Vis Sci,2012,53(3):1188-1194.
4.Camras LJ,Stamer WD,Epstein D,et al.Differential effects of trabecular meshwork stiffness on outflow facility in normal human and porcine eyes[J].Invest Ophthalmol Vis Sci,2012,53(9):5242-5250.
5.Repetto R,Siggers JH,Stocchino A.Mathematical model of flow in the vitreous humor induced by saccadic eye rotations:effect of geometry[J].Biomech Model Mechanobiol,2010,9(1):65-76.
6.Pedrigi RM,Dziezyc J,Humphrey JD.Altered mechanical behavior and properties of the human anterior lens capsule after cataract surgery[J].Exp Eye Res,2009,89(4):575-580.
7.MauriceDM.Thestructureandtransparencyof the cornea[J]. J Physiol,1957,136(2):263-286.
8.Chakravarti S,Magnuson T,Lass JH,et al.Lumican regulates collagen fibril assembly:skin fragility and corneal opacity in the absence of lumican[J].J Cell Biol,1998,141(5):1277-1286.
9.Komai Y,Ushiki T.The three-dimensional organization of collagen fibrils in the human cornea and sclera[J].Invest Ophthalmol Vis Sci,1991,32(8):2244-2258.
10.Roberts C.The cornea is not a piece of plastic[J].J Refract Surg,2000,16(4):407-413.
11.Elsheikh A,Wang D,Brown M,et al.Assessment of corneal biomechanical properties and their variation with age[J].Curr Eye Res,2007,32(1):11-19.
12.Goldich Y,Barkana Y,Pras E,et al.Variations in cornealbiomechanicalparametersand centralcorneal thickness during the menstrual cycle[J].J Cataract Refract Surg,2011,37(8):1507-1511.
13.Smolek MK.Holographic interferometry of intact and radially incised human eye-bank corneas[J].J Cataract Refract Surg,1994,20(3):277-286.
14.Kasprzak H,Förster W,von Bally G.Measurement of elastic modulus of the bovine cornea by means of holographic interferometry.Part 1.Method and experiment[J]. Optom Vis Sci,1993,70(7):535-544.
15.Knox Cartwright NE,Tyrer JR,Marshall J.In vitro quantification of the stiffening effect of corneal cross-linking in the human cornea using radial shearing speckle pattern interferometry[J].J Refract Surg,2012,28(7):503-508.
16.Luce DA.Determining in vivo biomechanical properties of the cornea with an ocular response analyzer[J].J Cataract Refract Surg,2005,31(1):156-162.
17.Glass DH,Roberts CJ,Litsky AS,et al.A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis[J].Invest Ophthalmol Vis Sci,2008,49(9):3919-3926.
18.Touboul D,Bénard A,Mahmoud AM,et al.Early biomechanical keratoconus pattern measured with an ocular response analyzer:curve analysis[J].J Cataract Refract Surg,2011,37(12):2144-2150.
19.Mikielewicz M,Kotliar K,Barraquer RI,et al.Airpulse corneal applanation signal curve parameters for the characterisation of keratoconus[J].Br J Ophthalmol,2011,95(6):793-798.
20.Hon Y,Lam AK.Corneal deformation measurement using scheimpflug noncontact tonometry[J].Optom Vis Sci,2013,90(1):e1-e8.
21.Tanter M,Touboul D,Gennisson JL,et al.High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging[J].IEEE Trans Med Imaging,2009,28(12):1881-1893.
22.Ford MR,Dupps WJ Jr,Rollins AM,et al.Method for optical coherence elastography of the cornea[J].J Biomed Opt,2011,16(1):016005.
23.Scarcelli G,Yun SH.In vivo Brillouin optical microscopy of the human eye[J].Opt Express,2012,20(8):9197-9202.
24.Meek KM,Tuft SJ,Huang Y,et al.Changes in collagen orientation and distribution in keratoconus corneas[J].Invest Ophthalmol Vis Sci,2005,46(6):1948-1956.
25.Dawson DG,Randleman JB,Grossniklaus HE,et al. Corneal ectasia after excimer laser keratorefractive surgery: histopathology,ultrastructure,and pathophysiology[J]. Ophthalmology,2008,115(12):2181-2191.
26.Ortiz D,Piñero D,Shabayek MH,et al.Corneal biomechanical properties in normal,post-laser in situ keratomileusis,and keratoconic eyes[J].J Cataract Refract Surg,2007,33(8):1371-1375.
27.Gefen A,Shalom R,Elad D,et al.Biomechanical analysis of the keratoconic cornea[J].J Mech Behav Biomed Mater,2009,2(3):224-236.
28.Shah S,Laiquzzaman M,Bhojwani R,et al.Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes[J]. Invest Ophthalmol Vis Sci,2007,48(7):3026-3031.
29.Kirwan C,O'Malley D,O'Keefe M.Corneal hysteresis and corneal resistance factor in keratoectasia:findings using the reichert ocular response analyzer[J].Ophthalmologica,2008,222(5):334-337.
30.Schweitzer C,Roberts CJ,Mahmoud A M,et al. Screening of forme fruste keratoconus with the ocular response analyzer[J].Invest Ophthalmol Vis Sci,2010,51(5):2403-2410.
31.Greenstein SA,Fry KL,Hersh PS.In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia:1-year analysis of a randomized,controlled,clinical trial[J].Cornea,2012,31(1): 21-25.
32.Gkika M,Labiris G,Giarmoukakis A,et al.Evaluation of corneal hysteresis and corneal resistance factor after corneal cross-linking for keratoconus[J].Graefes Arch Clin Exp Ophthalmol,2012,250(4):565-573.
33.Goldich Y,Marcovich AL,Barkana Y,et al.Clinical and corneal biomechanical changes after collagen crosslinking with riboflavin and UV irradiation in patients with progressive keratoconus:results after 2 years of follow-up[J]. Cornea,2012,31(6):609-614.
34.Roy AS,Dupps WJ.Patient-specific computational modeling of keratoconus progression and differential responses to collagen cross-linking[J].Invest Ophthalmol Vis Sci,2011,52(12):9174-9187.
35.Hallahan KM,Rocha K,Roy AS,et al.Effects of corneal cross-linking on ocular response analyzer waveform-derived variables in keratoconus and postrefractive surgery ectasia[J].Eye Contact Lens,2014,40(6):339-344.
36.Tian L,Ko MW,Wang LK,et al.Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes[J].J Refract Surg,2014,30(11):785-791.
37.Roy AS,Dupps WJ.Effects of altered corneal stiffness on native and postoperative LASIK corneal biomechanical behavior:a whole-eye finite element analysis[J].J Refract Surg,2009,25(10):875-887.
38.Seven I,Sinha Roy A,Dupps WJ.Patterned corneal collagen crosslinking for astigmatism:computational modeling study[J].J Cataract Refract Surg,2014,40(6):943-953.
39.Seven I,Dupps WJ.Patient-Specific finite element simulations of standard incisional astigmatism surgery and a novel patterned collagen crosslinking approach to astigmatism treatment[J].J Med Device,2013,7(4):0409131-0409132.
40.Shaikh NM,Shaikh S,Singh K,et al.Progression to end-stage glaucoma after laser in situ keratomileusis[J].J Cataract Refract Surg,2002,28(2):356-359.
41.Aristeidou AP,Labiris G,Katsanos A,et al.Comparison between pascal dynamic contour tonometer and goldmann applanation tonometer after different types of refractive surgery[J].Graefes Arch Clin Exp Ophthalmol,2011,249(5):767-773.
42.Liu J,Roberts CJ.Influence of corneal biomechanical properties on intraocular pressure measurement:quantitative analysis[J].J Cataract Refract Surg,2005,31(1): 146-155.
43.Tranchina L,Lombardo M,Oddone F,et al.Influence of corneal biomechanical properties on intraocular pressure differences between an air-puff tonometer and the Goldmann applanation tonometer[J].J Glaucoma,2013,22(5):416-421.
44.Shin J,Kim TW,Park SJ,et al.Changes in biomechanical properties of the cornea and intraocular pressure after myopic laser in situ keratomileusis using a femtosecond laser for flap creation determined using ocular response analyzer and Goldmann applanation tonometry[J].J Glaucoma,2015,24(3):195-201.
45.Sung KR,Lee JY,Kim MJ,et al.Clinical characteristics of glaucomatous subjects treated with refractive corneal ablation surgery[J].Korean J Ophthalmol,2013,27(2): 103-108.
46.Chang PY,Chang SW,Wang JY.Assessment of corneal biomechanical properties and intraocular pressure with the ocular response analyzer in childhood myopia[J].Br J Ophthalmol,2010,94(7):877-881.
47.Prata TS,Lima VC,Guedes LM,et al.Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients[J]. Clin Experiment Ophthalmol,2012,40(7):682-688.
48.Bochmann F,Ang GS,Azuara-Blanco A.Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve(APON)[J].Graefes Arch Clin Exp Ophthalmol,2008,246(5):735-738.
49.Khawaja AP,Chan MP,Broadway DC,et al.Corneal biomechanical properties and glaucoma-related quantitative traits in the EPIC-Norfolk Eye Study[J].Invest Oph-thalmol Vis Sci,2014,55(1):117-124.
50.Abitbol O,Bouden J,Doan S,et al.Corneal hysteresis measured with the Ocular Response Analyzer in normal and glaucomatous eyes[J].Acta Ophthalmol,2010,88(1):116-119.
51.Narayanaswamy A,Su DH,Baskaran M,et al.Comparison of ocular response analyzer parameters in Chinese subjects with primary angle-closure and primary openangle glaucoma[J].Arch Ophthalmol,2011,129(4): 429-434.
52.Morita T,Shoji N,Kamiya K,et al.Corneal biomechanical properties in normal-tension glaucoma[J].Acta Ophthalmol,2012,90(1):e48-e53.
53.Ayala M.Corneal hysteresis in normal subjects and in patients with primary open-angle glaucoma and pseudoexfoliation glaucoma[J].Ophthalmic Res,2011,46(4):187-191.
54.Kirwan C,O'Keefe M,Lanigan B.Corneal hysteresis and intraocular pressure measurement in children using the reichert ocular response analyzer[J].Am J Ophthalmol,2006,142:990-992.
55.Mansouri K,Leite MT,Weinreb RN,et al.Association between corneal biomechanical properties and glaucoma severity[J].Am J Ophthalmol,2012,153(3):419-427. e1.
56.Medeiros FA,Meira-Freitas D,Lisboa R,et al.Corneal hysteresis as a risk factor for glaucoma progression:a prospective longitudinal study[J].Ophthalmology,2013, 120(8):1533-1540.
(2016-04-20收稿)
R770.4
A
10.3969/j.issn.1000-2669.2016.03.004
邓应平,男,教授。E-mail:dyp558@163.com