黄娇艳
摘 要:说到计算教学,让人第一时间想到的就是枯燥单调、无话可讲。所以笔者在设计这节课时,尝试从学生的兴趣入手,为学生创设良好的学习情境,合理地引导学生主动参与学习,然后进行巩固训练和引用,从而提升计算教学的实效,提高学生的计算能力。
关键词:学生 小数 计算
【中图分类号】G 【文献标识码】B 【文章编号】1008-1216(2015)11B-0072-01
一、教学片段
(一)探究计算方法
(1)学生尝试计算0.8×3,得出2.4。(2)提问:这个结果正确吗?你有什么办法验证?简单记录下来。(3)自学书本:不少同学已经写出了自己的方法,下面请大家去看看书上关于这道题目还有哪些方法?(4)交流、介绍方法。(5)结合学生介绍,重点强调第一、二种方法:这两种方法都是利用我们以前学过的知识解决今天的新问题——转化成前面学过的小数加法或是通过单位的换算转化成了8×3这样一道整数乘法。(6)理清竖式计算的算理: 8个十分之一乘3,结果是24个十分之一,所以是2.4。因此,在计算0.8乘3时,实际算的是8×3这样一道整数乘法。(7)猜想:先看成整数乘整数,再点小数点。这样的猜想是否正确呢?让我们通过2.35×3这一题进行验证。
(二)验证竖式计算的合理性
(1)尝试用竖式计算2.35×3,并用加法验证。(2)思考:①计算2.35×3看成( )×( )。 ②3为什么不和整数部分的2对齐?③结果为什么是两位小数?(3)组织学生交流:先看竖式的书写格式,既然是看成235×3来计算,那么就按照235×3的书写方式,所以就是末尾对齐;而这里的235其实就是235个百分之一,乘3,得到的是705个百分之一,所以结果就是7.05。(4)引导学生观察0.8×3=2.4和2.35×3=7.05这两道乘法的乘数和积的小数位数,发现:乘数只有一位小数,积也是一位小数,乘数是两位小数,积也是两位小数。(5)验证积的小数位数与乘数的小数位数有关。6.师生共同总结计算方法。
二、总结反思
(一)基于教材
1.淡化意义教学。计算教学的任务无非有三个:意义、算理和算法。小数乘法的意义是什么?我们都知道,小数的真身是分数,它是十进分数的另一种写法,所以要让学生理解小数乘法的意义,应从分数乘法的意义入手,才能接触到它最本质的东西,但这得等学生理解了分数的意义才能解决,所以教材对于小数乘法单元中意义的解释笔墨是很少的。对于2.4×3,可能从整数乘法意义的角度还好解释,但是对于0.3×0.5,如果从分数乘法的意义去解释,可能更加妥帖。基于这样的考虑,本节课淡化了意义的教学。
2.把整数乘法作为这节课的主线。整数乘法的意义和算理结构、积的变化规律以及小数意义的表征方式,这些和小数乘法的学习都是有联系的。对于今天这节课来说,我以为最能被激活的应该是学生已有的“整数乘法的算理结构”,连接它的纽带就是小数意义的表征方式。虽然对于第一道算式0.8×3为什么等于2.4出现了很多解释,像通过用加法计算以及通过货币单位的转化等等,但这些方法都是有局限性的,而只有通过小数意义的解释,即8个十分之一乘3是24个十分之一,所以结果才是2.4,这才是从纯数学的角度解释了2.4的缘由,这个其实就是这道小数乘法的算理。解释完算理,后面就是算法的落实了,那就得牢牢抓住整数乘法这个关键词,比如数位为什么是末尾对齐?因为是看成整数乘法,计算的过程中为什么不要点小数点?还是因为看成整数乘法,最终使学生把算小数乘法像整数乘法成为一种自觉的想法。
(二)基于学生
1.学生能学什么。现在我们都主张让学生先学,即教学应建立在学生先学的基础上。怎么先学?这节课采取的方式是,让学生带着自己的思考去看书, 因为对于0.8×3,学生并不是毫无办法,有的能直接用乘法,但不一定能解释其中的道理,书上关于这些方法、这些道理都有介绍,那么就在学生思考后,教师安排自学书本这一环节,我觉得这时看书是非常有必要的。
2.教师该讲什么。我觉得,教师要讲在知识的重点处、难点处。比如,第一环节,学生阅读书本介绍的三种方法后,教师重点强调的就是0.8乘3竖式计算的算理,而在练习环节的竖式计算中,关注的就是如何利用整数乘法把小数乘法做好,乍一看小数乘整数,似乎很简单,但你如果细细观察学生的计算,就会发现很多问题,从书写的格式,竖式怎么写,到中间的过程,小数点要不要点,一直到最后的结果,有0又有小数点,怎么处理等等,学生很糊涂,大部分学生有这样的问题,所以这时我们教师必须介入,首先得把这些矛盾激发出来。所以我就安排了这样的四道竖式计算,第1题是3.7×5是基本题,没有任何问题,而后面0.18×5、46×0.13、1.2×30都内有乾坤,涵盖了小数乘整数所有该注意的地方,怎么突出矛盾?我选择了用学生的作业进行对比的方式,让学生在争论中渐渐明晰算法,那就是一切从整数乘法出发。
参考文献:
[1]蒋望雷,汤骥.建立关系模型,沟通新旧知识[J].教学月刊(小学版),2014,(7).
[2]黄彪.对“小数乘整数”教学的研究[J].小学教学,2014,(12).
内蒙古教育·基教版2015年11期