陈金容
【摘 要】本文主要对如何开展小学数学复习课的有效教学进行了探讨。首先介绍了数学复习课中存在的一些问题,然后针对这些问题提出了一系列针对性的建议。
【关键词】小学数学 复习课 有效教学
中图分类号:G4 文献标识码:A DOI:10.3969/j.issn.1672-0407.2015.04.095
数学的复习课是将平时相对独立的知识点,通过再现、比较、归纳等方法使其串成线、连成片,并通过一定量的练习促进学生对知识理解的一种课型。它并不是单纯的知识重复,而是在学生已有的认知水平上,对一阶段学习过的知识要点,通过梳理沟通,达到深层次的再学习,从而架构起比较系统的认知结构,可见复习是数学教学不可缺少的环节。
但由于一些教师的认知不到位和行为不当,导致当前复习课教学出现一些偏差,对复习课的认识只停留在知识点小结、查漏补缺、题型训练上,使复习走过场,甚至有虚设或浪费时间的现象,可见,很多教师仅仅是模仿了复习课的“形”,未真正领略其“神”,使得复习往往流于形式,不能真正达到复习的要求,从而丢失了复习真正赋予的价值意义。针对以上这些情况,笔者开始对复习如何有效进行了追寻与思考。
一、创设有效情境,再现知识要点
复习课的一大难题是复习的知识点密集。很显然,要学生凭空去回忆一单元的知识要点是有困难的,即使能回忆出几个,这样干巴巴的回忆知识要点及其算理,结果不仅学生说不清算理,而且,一个学生在说的时候多数学生不能随着说而思考,反而使教学成为教师与个别学生的对话过程,效率可想而知。因此教学要从学生所熟悉的现实情境和已有的知识经验出发,创设一个能基本涵盖复习要点的有效情境,才能让学生“有事可做”、“有话想说”、“有感而发”,从而积极而又顺利地再现知识。
二、引领纵联横比,有效搭建体系
复习课的关键是整理。复习课的知识点密集,相互之间的联系十分复杂。复习课不仅要回顾、巩固原有知识,还要对相关知识进行联系、沟通,把平时学的散乱知识串成线、连成片,形成一个知识体系,逐渐完善认知结构。而要帮它们理清关系并建立联系,首先必须得明晰知识之间的个性与共性。
比如在教学“角和四边形”总复习时,其中就涉及整理这些特殊的四边形,当学生汇报反馈后,如表格中所示:
通过之前新授课的教学,学生已经掌握了各自图形的特点,但这些看起来简单的图形和特征全放在一起却为难了很多学生,实际上这个症结也就是我们复习课整理的意义所在。如何去加以沟通与联系呢?笔者认为可以把它们加以纵向的联系和横向的比较,也就是竖着看一下表格,哪几行的特点这些图形选的最少?哪几行最多?通过四边形内部的纵联横比,梯形的“只有一组对边平行”的个性凸显无疑,而特点选的最多的恰是“两组对边分别相等”、“两组对边分别平行”和“对角相等”,这些特点其实就是平行四边形的特点。很显然,只要拥有这三个特点的四边形都是平行四边形,因此学生们自然明白了长方形、正方形是特殊的平行四边形。
三、开展思维训练,深化建构体系
复习课要有“理”,也应有“练”。任何一节课都有一个共同的目标,即在原来的基础上获得发展,复习课也一样。虽然,复习课的主体是对知识进行整理,但是,它也需要适度、适量的练习,而且其练习应不同于新授课的练习,它应有着更高的开放性和综合性,从而促进学生认知体系的内化和能力的提升。
经过整理形成的新的知识体系还不够稳定,需要进一步内化,练习需要围绕这一目标进行设计。如在“角和四边形”整理后,出示一个平行四边形,让学生量出各角的度数,并且想一想,至少要量几次?
反馈中,学生出现了不同层次的理解水平。有需要量三次,再利用四边形内角和减求出另一个角的;而大多数同学认为量取两个互补的角,再利用对角相等的知识得出另两个角;也有一少部分同学认为只要量取一次,而且过程精彩纷呈,有的是利用对角得出两个角的度数,再利用内角和去求解,也有同学说先取内角和一半再去减已知角就行。多样的解题思路,源自学生不同的知识建构体系。通过各自方法的解释,发现还是来自于对角相等这个结论。学生的认知结构在这里得到了具体的呈现,再一次获得互补、优化的机会。
一堂好的复习课应把知识从单维的角度想方设法带入多维的思考。它不应该是重复学习,而是在学生原有的认知基础上的深层次的再学习,它从某种意义上也能理解成是一节新授课,只不过它的学习目标体系不同于我们平时的新授课。因而教师要将学习的主动权交还给学生,让学生经历知识串成线、连成片的建构过程,并引发学生的积极思考,深入思维,让复习课成为学生的一次愉快经历,获得终生可持续发展的力量源泉。