浅谈证明不等式的方法

2015-03-10 18:10钟劲松
中学数学杂志(高中版) 2015年1期
关键词:两圆正数图象

钟劲松

1构图法的历史

构图法,即构造几何图形,利用几何图形的性质来帮助说明不等式.构图法出现已经有很长的历史,可以追溯到十二世纪的古代中国,希腊和印度.一些数学家认为构图法不是一种严格的证明,构图法对于实际证明毫无价值,证明有且只有一种方式——推理,构图证明是不能够接受的.但还有一部分数学家认为,数学不仅是逻辑的,还是图形的,作为数学教育工作者,必须把培养学生的想象能力作为重要的能力之一.数学教育家波利亚指出画图帮助理解题意,被认为是经典的教育学建议.爱因斯坦和庞加莱都认为,我们应该利用好我们的直觉;美国数学家加德纳指出,许多情形下,一个平淡的证明加上一个几何类似图形,使得证明更加简单和漂亮,定理的准确性立见.所有的这些,都说明了构图法对帮助证明的重要性.

2几个不等式的构图说明

高中数学选修模块45《不等式选讲》中的不等式主要有:基本不等式,绝对值不等式,平均值不等式,柯西不等式,排序不等式,贝努利不等式.中学阶段很多不等式的证明可以利用构图法来理解,下面列举几个不等式的构图.

2.1不等式a+b2≥ab(a,b为正数)的构图

不等式表明:两个正数的算术平均数a+b2不小于它们的几何平均数ab,即a+b2≥ab(a,b为正数),教材中一般构造如下的几何图形来加强理解.

图1图2如图1所示,在正方形ABCD中,有S△ABC+S△AFM-S矩形ABEF≥0,即a2+b2≥a·b,所以a+b2≥ab.基本不等式的另一种构图,如图2所示,把半径不等的两圆水平放置,且都与直线AB相切,两圆外切,有OF=a+b2,OE=a-b2.在直角三角形OEF中,利用勾股定理可知EF=ab,因为OF>EF,所以a+b2≥ab.图1~2都说明了不等式a+b2≥ab的几何意义,并且能直观地感知当且仅当“a=b”时“=”成立.

2.2不等式2aba+b

如图3所示,M为圆A外一点,MA与圆A分别相交于P、Q两点,MG,MR分别为圆A的切线和割线,PM=a,QM=b,a>b>0,则有HM

2.3不等式xr-1>r(x-1)的构图

当n为正整数,x>-1时,(1+x)n≥1+nx成立,称为贝努利不等式(Bernoulli inequality),其证明方法通常有数学归纳法和利用二项式定理进行放缩.但形如xr-1>r(x-1)的不等式,不能采用类似于证明贝努利不等式的方法进行证明,可采用构图法帮助证明.构造如图4所示的图形,在同一坐标系中分别作出函数y=xr-1和y=r(x-1)的图象,函数y=xr-1为经过(1,0)点的凸函数,函数y=r(x-1)的图象是斜率为r,经过点(1,0)的直线,且直线y=r(x-1)与y=xr-1的图象相切,切点为(1,0).因此,当r>1,x>0,x≠1时,不等式xr-1>r(x-1)恒成立.

2.4不等式ab

构图来帮助证明分布在数学中的各个方面,如代数,几何,三角,微积分和动态几何,不等式,数列,排列、组合等等.数学上许多的定理和概念,都可以用优美、简洁的图形来表示.老师们应该在平时教学中多注意总结,设计更多的图来帮助学生直观地理解数学知识,学好数学,让数学变得更为直观.

猜你喜欢
两圆正数图象
一元二次不等式的图象解法
《一次函数》拓展精练
点击图象问题突破图象瓶颈
学好乘方四注意
内容丰富的数字0
直线运动中的几个“另类”图象
圆与圆的位置关系
关于一道2013年日本奥数决赛题的深度探究
正数与负数(小相声)
圆与圆试题类型大盘点