本刊试题研究组
一、填空题
1.抛物线y=mx2的准线方程为y=2,则m的值为 .
2.若函数f(x)=a-x+x+a2-2是偶函数,则实数a的值为 .
3.若sin(α+π12)=13,则cos(α+7π12)的值为 .
4.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 .
5.已知向量a的模为2,向量e为单位向量,e⊥(a-e),则向量a与e的夹角大小为 .
6.设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(-2,0)时,f(x)=2x,则f(2012)-f(2013)= .
34对应的变换将点(-2,1)变换成点(0,b),求实数a,b的值.
C.选修44:坐标系与参数方程
椭圆中心在原点,焦点在x轴上.离心率为12,点P(x,y)是椭圆上的一个动点,
若2x+3y的最大值为10,求椭圆的标准方程.
D.选修45:不等式选讲
若正数a,b,c满足a+b+c=1,求13a+2+13b+2+13c+2的最小值.
[必做题] 第22、23题,每小题10分,计20分.
22.如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA1B1C1D1中,P是侧棱CC1上的一点,CP=m.
(1)试确定m,使直线AP与平面BDD1B1所成角为60°;
(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q⊥AP,并证明你的结论.
23.(本小题满分10分)
已知,(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*)
(1)求a0及Sn=a1+a2+a3+…+an;
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
参考答案
一、填空题
1. -18
2. 2
3. -13
4. 0.75
5. π3
6. 12
7. 710
8. x24-y2=1
9. (0,14]
10. 3
11. 2
12. ③④
13. 3324
14. (0,3-e)
二、解答题
15.解:(1)因为π4<A<π2,且sin(A+π4)=7210,
所以π2<A+π4<3π4,cos(A+π4)=-210.
因为cosA=cos[(A+π4)-π4]
=cos(A+π4)cosπ4+sin(A+π4)sinπ4
=-210·22+7210·22=35.所以cosA=35.
(2)由(1)可得sinA=45.所以f(x)=cos2x+52sinAsinx
=1-2sin2x+2sinx=-2(sinx-12)2+32,x∈R.因为sinx∈[-1,1],所以,当sinx=12时,f(x)取最大值32;当sinx=-1时,f(x)取最小值-3.
所以函数f(x)的值域为[-3,32].
16.解:(1)在Rt△ABC中,AB=1,
∠BAC=60°,∴BC=3,AC=2.
在Rt△ACD中,AC=2,∠CAD=60°,
∴CD=23,AD=4.
∴SABCD=12AB·BC+12AC·CD
=12×1×3+12×2×23=523.则V=13×523×2=533.
(2)∵PA=CA,F为PC的中点,
∴AF⊥PC.∵PA⊥平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.∴CD⊥PC.
∵E为PD中点,F为PC中点,
∴EF∥CD.则EF⊥PC.
∵AF∩EF=F,∴PC⊥平面AEF.
(3)取AD中点M,连EM,CM.则EM∥PA.
∵EM平面PAB,PA平面PAB,
∴EM∥平面PAB.
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC平面PAB,AB平面PAB,
∴MC∥平面PAB.
∵EM∩MC=M,
∴平面EMC∥平面PAB.
∵EC平面EMC,
∴EC∥平面PAB.
17.解:(1)在△BCD中,
∵BDsin60°=BCsinα=CDsin(120°-α),
∴BD=32sinα,CD=sin(120°-α)sinα,
则AD=1-sin(120°-α)sinα.
s=400·32sinα+100[1-sin(120°-α)sinα]
=50-503·cosα-4sinα,其中π3≤α≤2π3.
(2)s′=-503·-sinα·sinα-(cosα-4)cosαsin2α=503·1-4cosαsin2α.
令s′=0得cosα=14.记cosα0=14,α0∈(π3,2π3);
当cosα>14时,s′<0,当cosα<14时,s′>0,
所以s在(π3,α0)上单调递减,在(α0,2π3)上单调递增,
所以当α=α0,即cosα=14时,s取得最小值.
此时,sinα=154,
AD=1-sin(120°-α)sinα=1-32cosα+12sinαsinα
=12-32·cosαsinα=12-32·14154=12-510.
答:当AD=12-510时,可使总路程s最少.
18.解:(1)点A代入圆C方程,得(3-m)2+1=5.
∵m<3,∴m=1.
圆C:(x-1)2+y2=5.
设直线PF1的斜率为k,则PF1:y=k(x-4)+4,即kx-y-4k+4=0.
∵直线PF1与圆C相切,∴|k-0-4k+4|k2+1=5.解得k=112,或k=12.
当k=112时,直线PF1与x轴的交点横坐标为3611,不合题意,舍去.
当k=12时,直线PF1与x轴的交点横坐标为-4,
∴c=4,F1(-4,0),F2(4,0).
2a=AF1+AF2=52+2=62,a=32,a2=18,b2=2.
椭圆E的方程为:x218+y22=1.
(2)AP=(1,3),设Q(x,y),AQ=(x-3,y-1),
AP·AQ=(x-3)+3(y-1)=x+3y-6.
∵x218+y22=1,即x2+(3y)2=18,
而x2+(3y)2≥2|x|·|3y|,∴-18≤6xy≤18.
则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36].
x+3y的取值范围是[-6,6].
∴AP·AQ=x+3y-6的取值范围是[-12,0].
19.解:(1)由P1(t21,t1)(t>0),得kOP1=1t1=tanπ3=3t1=33,
∴P1(13,33),a1=|Q1Q0|=|OP1|=23.
(2)设Pn(t2n,tn),得直线PnQn-1的方程为:y-tn=3(x-t2n),
可得Qn-1(t2n-tn3,0),
直线PnQn的方程为:y-tn=-3(x-t2n),可得Qn(t2n+tn3,0),
所以也有Qn-1(t2n-1+tn-13,0),得t2n-tn3=t2n-1+tn-13,由tn>0,得tn-tn-1=13.
∴tn=t1+13(n-1)=33n.
∴Qn(13n(n+1),0),Qn-1(13n(n-1),0),
∴an=|QnQn-1|=23n.
(3)由已知对任意实数时λ∈[0,1]时,n2-2n+2≥(1-λ)(2n-1)恒成立,
对任意实数λ∈[0,1]时,(2n-1)λ+n2-4n+3≥0恒成立
则令f(λ)=(2n-1)λ+n2-4n+3,则f(λ)是关于λ的一次函数.
对任意实数λ∈[0,1]时,f(0)≥0
f(1)≥0.
n2-4n+3≥0
n2-2n+2≥0n≥3或n≤1,
又∵n∈N*,∴k的最小值为3.
20.(1)解:因为f′(x)=(x2-3x+3)·ex+(2x-3)·ex=x(x-1)·ex
由f′(x)>0x>1或x<0;由f′(x)<00<x<1,所以f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减
欲f(x)在[-2,t]上为单调函数,则-2<t≤0.
(2)证:因为f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减,所以f(x)在x=1处取得极小值e
又f(-2)=13e2<e,所以f(x)在[-2,+∞)上的最小值为f(-2)
从而当t>-2时,f(-2)<f(t),即m<n.
(3)证:因为f′(x0)ex0=x20-x0,所以f′(x0)ex0=23(t-1)2即为x20-x0=23(t-1)2,
令g(x)=x2-x-23(t-1)2,从而问题转化为证明方程g(x)=x2-x-23(t-1)2=0
在(-2,t)上有解,并讨论解的个数.
因为g(-2)=6-23(t-1)2=-23(t+2)(t-4),g(t)=t(t-1)-23(t-1)2=13(t+2)(t-1),所以
①当t>4或-2<t<1时,g(-2)·g(t)<0,所以g(x)=0在(-2,t)上有解,且只有一解.
②当1<t<4时,g(-2)>0且g(t)>0,
但由于g(0)=-23(t-1)2<0,
所以g(x)=0在(-2,t)上有解,且有两解.
③当t=1时,g(x)=x2-x=0x=0或x=1,所以g(x)=0在(-2,t)上有且只有一解;
当t=4时,g(x)=x2-x-6=0x=-2或x=3,
所以g(x)=0在(-2,4)上也有且只有一解.
综上所述,对于任意的t>-2,总存在x0∈(-2,t),满足f′(x0)ex0=23(t-1)2,
且当t≥4或-2<t≤1时,有唯一的x0适合题意;当1<t<4时,有两个x0适合题意.
(说明:第(2)题也可以令φ(x)=x2-x,x∈(-2,t),然后分情况证明23(t-1)2在其值域内,并讨论直线y=23(t-1)2与函数φ(x)的图象的交点个数即可得到相应的x0的个数)
附加题
21.(A)解:因为MA为圆O的切线,所以MA2=MB·MC.
又M为PA的中点,所以MP2=MB·MC.
因为∠BMP=∠BMC,所以△BMP∽△PMC.
于是∠MPB=∠MCP.
在△MCP中,由∠MPB+∠MCP+∠BPC+∠BMP=180°,得∠MPB=20°.
(B)解:∵0
b=1a
34-2
1=-2+a
-6+4,
∴0=-2+a
b=-2,即a=2,b=-2.
(C)解:离心率为12,设椭圆标准方程是x24c2+y23c2=1,
它的参数方程为x=2cosθ
y=3sinθ,(θ是参数).
2x+3y=4ccosθ+3csinθ=5csin(θ+φ)最大值是5c,
依题意tc=10,c=2,椭圆的标准方程是x216+y212=1.
(D)解:因为正数a,b,c满足a+b+c=1,
所以,(13a+2+13b+2+13c+2)[(3a+2)+(3b+2)+(3c+2)]≥(1+1+1)2,
即13a+2+13b+2+13c+2≥1,
当且仅当3a+2=3b+2=3c+2,即a=b=c=13时,原式取最小值1.
22.解:(1)建立如图所示的空间直角坐标系,则
A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),
B1(1,1,1),D1(0,0,2).
所以BD=(-1,-1,0),BB1=(0,0,2),
AP=(-1,1,m),AC=(-1,1,0).
又由AC·BD=0,AC·BB1=0知AC为平面BB1D1D的一个法向量.
设AP与面BDD1B1所成的角为θ,
则sinθ=cos(π2-θ)=|AP·AC||AP|·|AC|
=22·2+m2=32,解得m=63.
故当m=63时,直线AP与平面BDD1B1所成角为60°.
(2)若在A1C1上存在这样的点Q,设此点的横坐标为x,
则Q(x,1-x,2),D1Q=(x,1-x,0).
依题意,对任意的m要使D1Q在平面APD1上的射影垂直于AP.等价于
D1Q⊥APAP·D1Q=0x+(1-x)=0x=12
即Q为A1C1的中点时,满足题设的要求.
23.解:(1)取x=1,则a0=2n;取x=2,则a0+a1+a2+a3+…+an=3n,
∴Sn=a1+a2+a3+…+an=3n-2n;
(2)要比较Sn与(n-2)2n+2n2的大小,即比较:3n与(n-1)2n+2n2的大小,
当n=1时,3n>(n-1)2n+2n2;
当n=2,3时,3n<(n-1)2n+2n2;
当n=4,5时,3n>(n-1)2n+2n2;
猜想:当n≥4时,3n>(n-1)2n+2n2,下面用数学归纳法证明:
由上述过程可知,n=4时结论成立,
假设当n=k,(k≥4)时结论成立,即3k>(k-1)2k+2k2,
两边同乘以3得:3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2]
而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0,
∴3k+1>((k+1)-1)2k+1+2(k+1)2
即n=k+1时结论也成立,∴当n≥4时,3n>(n-1)2n+2n2成立.
综上得,当n=1时,Sn>(n-2)2n+2n2;当n=2,3时,Sn<(n-2)2n+2n2;
当n≥4,n∈N*时,Sn>(n-2)2n+2n2.
中学课程辅导高考版·学生版2015年2期