丁少军
摘要:学习经验表明,通过自己的主动探究和总结后获取数学知识,往往比听教师的详细分析所掌握知识更加快捷、牢固,应用也更加游刃有余,很大程度提高学习实效性。开展学生说题题活动,能使所有学生有所心得、有所发展、有所提高,不仅能增强学生的自信心,激发学生学习的积极性,而且能提高学生的数学应用能力。
关键词:初中数学;学生说题;高效课堂
中图分类号:G633.6 文献标识码:B 文章编号:1672-1578(2014)22-0181-01
在初中数学教学中,学生活动普遍的是划分学习小组,通过学生共同探究,共同进步,提高了数学课堂的时效性,避免了过于强调接受学习和机械训练的弊端。波利亚指出:"学生要牢固地掌握数学,就必须用内心的创造和体验的方式来学数学"。教学经验表明,学生通过自己的探究和钻研,在解决困难之后获取数学知识,比起通过教师讲解获得知识更牢固,应用起来更加自如,学习效率自然就高。如何借助学生说题活动,提高学生的学习效率?以下就如何开展有效的说题活动谈谈自己的认识。
1.学生说题的意义
《新数学课程标准》指出:"有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式"。 解决数学习题是学习数学的重要环节,每道数学题都体现着重要的数学知识点和思想方法,对数学题的探究是提高学习数学能力重要手段。"说题"就是让学生通过阅读数学题后,经历探究的过程,把自己对数学题的审题、分析、解题策略及依据,总结出解题规律用语言表述出来,同时也让学生暴露自己面对问题时的困惑,再通过教师的引导,同学的相互补充,从根本上帮助学生解决自己存在的问题,说题也体现做一题解决一类问题的意识。一题多解、多变,有利于拓展学生的思维广度,提高学生的发散性思维。说题是教学双方在精心做题的基础上,阐述对某道(或某一批)数学题解答时所采用的一种新型教学摸式。通过说题活动,能使所有学生有所心得、有所发展、有所提高,不仅增强学生的自信心,更加激发学生学习的积极性,也提高学生的数学应用能力。
2.说题对学生学习数学的价值
2.1 高效掌握数学知识,减轻题海战的困扰。老师重点讲解的一道题目,学生听过后非常清楚,过一段时间却很陌生;学生每天做很多数学题,认为自己掌握很熟练,一考试大脑一片空白;熟题解起来像高手,一见到生题就犯傻。学习经验表明,往往通过自己的主动探究和总结后获取数学知识,比起听教师的详细分析所掌握知识更加快捷、牢固,应用起来更加游刃有余,很大程度提高学习实效性。只有自己真正总结了解题规律,同样类型的题没有必要重复去做,它是学生摆脱题海战术、减负增效的有效手段。
2.2 培养主动学习的习惯,提高学生的自学意识。说题时学生在相互交流中群策群力,各抒己见,会有百家争鸣的的气氛,学生从被动学习变为主动探究,每个学生都有展示才华的机会,学生在民主、宽松的情境中以最佳心态交流、敏捷的思维展示。让一个学生在全体学生面前展示自己……说题,他就会用心审题、分析,整理思路,而不是凭感觉随便说,没有做不到,就怕想不到,学生会逼迫自己努力探究、主动合作。经常进行说题不仅解决了问题,更丰富了学习方式,久而久之培养了学生的学习主动性,提高了自信心,提高了学习意识。
2.3 养成良好的反思意识,提高审题与解题能力。荷兰著名数学教育家弗赖登塔尔指出:"反思是数学思维活动的核心和动力。"学习贵在反思,学生平时解题时不需书面写出:条件、思维、策略、注意、规律,久而久之,不知反思的奥妙,自然不知道什么叫审题,从而导致了学生学习效果的低效或无效。只有不断地反思,才能使自己建构的知识接近数学知识的本质,最终达到真正将数学知识潜移默化、心会意领。因此,说题会引导学生由静听转变为主动探索,听中有思,思中有悟,学会捕捉引起反思的问题或提出具有反思性的见解;一定量的说题训练会提高学生思维品质,促使学生审题能力步步高升。
3.学生怎样说题
3.1 说条件。在解题时,理解题意是最重要的,清楚题中各个条件及关系是展开思维的基础。说条件要说出题中的已知条件,主要指各数学题的直接、简介、隐藏的已知条件等,以及有已知条件得出的相关结论;说出题中的未知条件及所求的问题;说出本题考查的知识点并能尽量说出本道数学题的考查意图。
3.2 说思维。思维是掌握事物本质规律、获得新知识、解决新问题的重要途径。掌握合理的思维方法和逻辑推理规律,对学生思维能力的发展和学习成绩的提高是十分有效的。数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,并进行回顾与反思的思维活动。数学解题注重宏观和微观的思维策略,宏观上要把握解题的大致方向,用什么知识来解决;微观上就是要注重解题预测,需要使用的计算方法和技巧,如何计算才合理,才能避免出错。说思维要说出思维的方式及依据;说出思维的过程及依据。
3.3 说策略。数学概念、定理、公式等是连接未知量与已知量的桥梁,因此,必须运用正确的策略,寻找最佳解题法。数学解题的策略的基本出发点在于"变换",即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。说出尽可能多的其它解题方法。
3.4 说规律。形成概念、掌握规律,达到举一反三,触类旁通,付诸应用是学习数学的最终目标。说规律要说出经验性的解题回顾,主要包括:一题多解型的最佳方案,一题多问、一题多变、和一题多改的扩展原理,独特、新颖的创造性解法,一题多联、融会贯通的同类型题解题规律等。
说题是数学教学实践中提炼出来的提高课堂教学有效性的方法之一,它是学生摆脱题海战术减负增效的有效手段,让学生充分发表自己的观点或论证结论,让学生自主的进行主动学习和探究,从而达到主动获取知识,培养良好学习方法和学习策略的目的。