怎样教好高中数学

2014-09-04 10:25丁彩玲
读写算·素质教育论坛 2014年17期
关键词:计算器认知结构例题

丁彩玲

中图分类号:G633.6 文献标识码:A 文章编号:1002-7661(2014)17-0040-02

现在所用的高中数学教材注意调动学生学习的积极性和主动性,研究学生的思维特点和学习规律,把学生作为学习的主体来编排内容。教材在内容的呈现上要注意联系实际,注意展示知识形成的过程,使学生在获取知识和运用知识的过程中,发展思维能力,提高思维品质,加深对所学知识的理解。

1.要充分利用先进的教学手段,提高教学效益

新的教学手段必然促进教学方法的改革,必然带来新的教学效益。高中相应的计算内容已充分使用科学计算器讲授,教师在教学中更应充分利用科学计算器,以提高教学效益,提高学生解决问题的能力。有条件的地方或学校,也要利用电子计算机和多媒体技术作为教学的辅助手段。要重视计算器和电脑的应用,要求今天的学生必须能够:进行心算和有效的估算;知道在某一特定条件下适于使用哪种数学运算;能够正确、自信和恰当地使用计算器;会估计数量级以确认心算或计算器计算的结果。计算器和计算机把困难的变得容易,使不可行的变得可行。例如,计算机能够显示和操作像三维的形状复杂的数学对象。使用计算机,学生能够解决与他们日常生活有关的现实问题和能够激发他们对数学产生持久的兴趣。计算机能把教师解放出来去完成只有教师才能完成的任务。比如和学生一起去探索、猜想。计算机提供了一种动态的、画图的手段;它还提供了许多有效的途径去表达数学思想。

2.把握好教学中的“度”,研究知识结构,控制教学难度

(1)重视知识的发生过程,淡化纯理论和学生难以接受的东西。如加入了引入课题的生动的数学故事和数学史话,以便创造出一个良好的学习氛围,使数学学习摆脱枯燥、抽象和脱离实际的现象。同时又删去了学生难以接受的、纯理论的知识。教师应该想方设法地去展示数学知识的发生过程。

(2)理解基础,重视基础。课堂教学应把主要精力用于将最基础的东西讲深、讲透。对于基础知识,教师往往认为每天在讲基础,但我认为某些教师还没有真正做到重视基础,至少把基础知识没有讲透。不论是优生和差生,当学生做出某一题时,他都会感到自然、轻松,有一种成功的喜悦,然而这些成功都是靠他对基础的基本知识的正确理解或深刻理解后的灵感得到的。没有对基础知识的理解、记忆,不会作出一个正确的反应,更不会对某一类知识和题型产生长久的正效应。所以教师立足与最基本的东西讲深讲透,在学生心目中留下深刻的影响是很重要的。

(3)研究课本例题、习题,发挥例题、习题功能。例题是解题最规范的解答过程,它和习题一起控制了教材的深度和知识辐射范围,课本例题既是如何运用知识解题的精典,也是思维训练的典范。正是这些典范的作用,学生才初步学会了怎样进行数学思维,怎样运用数学知识进行思考、解题,如何表述自己的解题过程。例题的教学是整个教学活动的重要部分,在教学过程中有画龙点睛的作用。因此,处理好例题是落实知识到位的关键一步。根据新教材的要求,我对例题的处理采取一看、二议、三评、四挖的教法。

3.教学要从学生实际出发,教学要符合教育学心理学发展

(1)所谓直观性,虽然中学生的认知发展水平已由具体运算进入了抽象运算阶段,但是即使他们在整体上认知水平已经达到了抽象运算的水平,在每个新数学概念的学习过程中仍然要经历从具体到抽象的转化,他们在学习新的数学概念时仍采用具体或直观的方式去探索新概念。中学课本的设置都是从特殊到一般,从具体到抽象,教师在备课时务必不要本末倒置,要在直观性的驾御上做些科学的合情创新,向学生提供丰富的直观背景材料。

(2)启发性。要使数学课程真正具有启发性,需要克服两种偏向:第一,内容过于简单,缺乏思考余地。没有挑战性,不能激发学生思维,甚至不能满足学生学习愿望。第二,内容过于复杂、抽象。超过了学生数学认知结构中“最近发展区”的水平,学生将会由于不能理解它,产生畏惧心理,最后厌恶学习数学。

(3)可接受性。教学内容、方法都要适合学生的认知发展水平。获得新的数学知识的过程,主要依赖于数学认知结构中原有的适当概念,通过新旧知识的相互作用,使新旧意义同化,从而形成更为高度同化的数学认知结构的过程,它包括输入、同化、操作三个阶段。因此,作为数学课程内容要同学生已有的数学基础有密切联系。其抽象性与概括性不能过低或过高,要处于同级发展水平。这样才能使数学课程内容被学生理解,被他们接受,才能产生新旧知识有意义的同化作用,改造和分化出新的数学认知结构。可接受性要求教师不要在课堂太过于表现自己,不要太聪明,有时还要故意装作不懂与学生融为一体。

4.教师的教学要多应用数学发现和解释实际问题

“应用”在数学教学中可以有许多解释,有些人为的非现实生活的例子,也可能有重要的教育价值,也可能养成学生应用数学的技能,还有多种形式体现“应用”。比如,“守门员如何站位才能缩小对手的射角?”“攻球员应当把球带到离球门多远处,他的射球位置能取得最大射角?”这些问题把数学与实际情境联系在一起,对有些学生有吸引力,但并不是真用数学解决问题,没有哪个球员会这样去计算他们站立的位置,数学的应用主要不在于这样的“应用”。更重要的是,这种“联系”不可能总是结合学生“实际的”,正如Carson说的,“现实是主体和时间的函数,对我是现实的,对别人未必是现实的;在过去是现实的,现在不一定再是现实的了。”可见要使课程有“应用”性是既复杂、又长期的问题。

在这种设计工作中,学生会看到数学如何才能够应用到真正的“现实生活”问题上去,并且可望获得进一步学习的动力,会自然地产生建立“数学模型”的机会,如比和比例、利息与利率、统计与概率、运筹与优化以及系统分析一决策……成本、利润、投入、产出、贷款、效益、股份、市场预测、风险评估等一系列经济词汇频繁使用,买与卖、存款与保险、股票与俩券……几乎每天都会碰到。

(责任编辑 全 玲)endprint

猜你喜欢
计算器认知结构例题
由一道简单例题所引发的思考
由一道简单例题所引发的思考
[计算器不是万能的]
向量中一道例题的推广及应用
问渠哪得清如许 为有源头活水来
托马斯·阿奎那的人类认知结构
一个损坏的计算器
一个损坏的计算器
中学生体育认知结构的若干思考