刘 菲,刘 楠,何 菱
(四川大学 华西药学院,四川 成都 610041)
·研究论文·
磺酰脒衍生物的合成及其抗肿瘤活性*
刘 菲,刘 楠,何 菱
(四川大学 华西药学院,四川 成都 610041)
以氯化亚铜为催化剂,叔胺为底物,磺酰叠氮为氮源,经“一锅法”合成了11个磺酰脒衍生物(3a~3k,其中3c,3e~3i和3k为新化合物),收率43%~96%,其结构经1H NMR,13C NMR和HR-ESI-MS表征。采用MTT法研究了3a~3j对人肺癌细胞(A549),人结肠癌细胞(HCT116)和人肝癌细胞(HepG2)的抗肿瘤活性。结果表明:在用药量为20μg·mL-1时,3a~3k对A549,HCT116和HepG2的抑制率均优于对照药紫杉醇,其中N,N-二乙基-N′-对甲氧基苯磺酰脒(3b)对A549的抑制率为82%;N,N-二丙基-N′-对甲氧基苯磺酰脒(3c)对HCT116抑制率为80%,具有较好的抗肿瘤活性。
磺酰脒类衍生物;磺酰叠氮;叔胺;合成;抗肿瘤活性
磺胺衍生物因具有多种生物活性而受到人们的青睐,如抗菌、抗炎、抗血栓形成、抗溃疡、抗过敏、抗HIV、利尿、降血糖、降低血压以及抗肿瘤活性[1-2]等,尤其能选择性集聚肿瘤细胞[3]的特性使人们对磺胺衍生物的研究日益浓厚。因此,借助药物化学最小修饰原则在磺胺衍生物上借助过渡金属催化C-N键直接引入亲水性的叔胺基团,从而改善磺胺类衍生物水溶性差的缺陷,获得副作用小活性更好的化合物具有研究意义。
为寻求一种简单、价廉、温和、高效、快速、选择性强的胺化方法,并探讨其在药物合成中的应用,本文利用过渡金属催化氮宾插入反应,以叠氮为氮源,探讨叔胺sp3C-H键插入胺化反应[4],为进一步发掘磺胺药物的生物活性及构效关系奠定基础。以磺酰叠氮(1a和1b)为氮源,亲水性叔胺(2a,2c~2f,2h,2i,2k)为底物,氯化亚铜为催化剂,经“一锅法”合成了11个磺酰脒衍生物(3a~3k,其中3c,3e~3i和3k为新化合物,Scheme 1),收率43%~96%,其结构经1H NMR,13C NMR和HR-ESI-MS表征。采用MTT法研究了3a~3j对人肺癌细胞(A549),人结肠癌细胞(HCT116)和人肝癌细胞(HepG2)的抗肿瘤活性。
1.1 仪器与试剂
Varian INPVA 400型核磁共振仪(CDCl3为溶剂,TMS为内标);Bruker Daltonics Data Analysis 3.2型质谱仪。
A549,HCT116,HepG220和MTT染料,Sigma;1和2按文献[5-6]方法合成;其余所用试剂均为分析纯。
反应均在氮气保护下进行,溶剂使用前经干燥除水。
1.23a~3k的合成(以3a为例)[5-6]
在干燥反应瓶中依次加入三乙胺(2a)143mg(1mmol),对甲苯磺酰叠氮(1a)591mg(3mmol),氯化亚铜20mg(0.2mmol)和三乙基苄基氯化铵(TEBA)22.7mg(0.1mmol)的乙腈(5mL)溶液,搅拌下回流反应8h。浓缩后经硅胶柱层析[洗脱剂:V(石油醚)∶V(乙酸乙酯)=8∶1和6∶1]纯化得淡黄色固体N,N-二乙基-N′-对甲基苯磺酰脒(3a)。
用类似的方法合成淡黄色固体3b~3k。
3a:产率96%;1H NMRδ:8.15(s,1H),7.76(d,J=8.4Hz,2H),7.25(d,J=8.4Hz,2H),3.47(q,J=7.2Hz,2H),3.38(q,J=7.2Hz,2H),2.40(s,3H),1.26(t,J=7.2Hz,3H),1.14(t,J=7.2Hz,3H);13C NMRδ:158.1,142.3,139.8,129.3,26.4,47.1,40.9,21.5,14.5,12.1;HR-ESI-MSm/z:Calcd for C15H14N2O2SNa{[M+Na]+}277.0981,found 277.0976。
3b:产率88%;1H NMRδ:8.14(s,1H),7.80~7.83(m,2H),6.91~6.95(m,2H),3.85(s,3H),3.47(q,J=7.2Hz,2H),3.37(q,J=7.2Hz,2H),1.26(t,J=7.2Hz,3H),1.14(t,J=7.2Hz,3H);13C NMRδ:162.2,157.9,134.7,128.4,113.8,55.5,47.0,40.9,14.5,12.1;HR-ESI-MSm/z:Calcd for C12H18N2O3SNa{[M+Na]+}293.0936,found 293.0936。
3c:产率90%;1H NMRδ:8.14(s,1H),7.80(d,J=8.8Hz,2H),6.93(d,J=8.8Hz,2H),3.85(s,1H),3.36(t,J=7.6Hz,2H),3.26(t,J=7.6Hz,2H),1.53~1.68(m,4H),0.91(t,J=7.8Hz,3H),0.86(t,J=7.8Hz,3H);13C NMRδ:162.2,158.8,134.7,128.3,113.8,55.5,54.2,47.8,21.9,20.0,11.2,10.9;HR-ESI-MSm/z:Calcd for C14H22N2O3SNa{[M+Na]+}321.1243,found 321.1244。
3d:产率54%;1H NMRδ:8.44(s,1H),7.84~7.88(m,2H),7.48(d,J=8.4Hz,1H),7.36(t,J=2.0Hz,1H),7.29(t,J=8.4Hz,1H),7.14(dd,J=2.0Hz,8.0Hz,1H),6.95~6.99(m,2H),3.95(q,J=7.2Hz,2H),3.87(s,3H),1.18(t,J=7.2Hz,3H);13C NMRδ:162.6,157.6,143.3,133.5,131.1,130.7,128.7,126.5,123.4,122.0,114.0,55.6,44.0,12.4;HR-ESI-MSm/z:Calcd for C16H17N2O3SBrNa{[M+Na]+}419.0041,found 419.0022。
3e:产率58%;1H NMRδ:8.41(s,1H),7.84~7.87(m,2H),7.39~7.42(m,2H),7.12~7.16(m,2H),6.94~6.98(m,2H),3.91~3.97(q,J=7.2Hz,2H),3.86(s,3H),1.17(t,J=7.2Hz,3H);13C NMRδ:162.6,157.6,140.5,133.6,133.4,130.0,128.7,124.8,114.0,55.6,44.1,12.3;HR-ESI-MSm/z:Calcd for C16H17N2O3SClNa{[M+Na]+}375.0541,found 375.0524。
3f:产率66%;1H NMRδ:8.34(s,1H),7.80(d,J=8.0Hz,2H),7.28(d,J=8.0Hz,2H),7.08~7.12(m,2H),6.90~6.94(m,2H),3.90(q,J=7.2Hz,2H),3.83(s,3H),2.41(s,3H),1.14(t,J=7.2Hz,3H);13C NMRδ:159.1,158.3,142.6,139.4,134.8,129.4,126.6,125.6,114.9,55.6,44.5,21.5,12.3;HR-ESI-MSm/z:Calcd for C17H20N2O3SNa{[M+Na]+}355.1087,found 355.1077。
3g:产率70%;1H NMRδ:8.33(s,1H),7.83~7.87(m,2H),7.08~7.11(m,2H),6.91~6.97(m,4H),3.89(q,J=7.2Hz,2H),3.85(s,3H),3.82(s,3H),1.14(t,J=7.2Hz,3H);13C NMRδ:162.4,159.1,158.1,134.8,134.1,128.6,125.6,114.9,113.9,55.6,55.5,44.5,12.3;HR-ESI-MSm/z:Calcd for C17H20N2O4SNa{[M+Na]+}371.1041,found 371.1063。
3h:产率55%;1H NMRδ:8.12(s,1H),7.78~7.82(m,2H),6.91~6.95(m,2H),3.85(s,3H),3.39(t,J=7.6Hz,2H),3.28(t,J=7.6Hz,2H),1.47~1.61(m,4H),1.23~1.33(m,4H),0.94(t,J=7.2Hz,2H),0.87(t,J=7.2Hz,2H);13C NMRδ:162.1,158.6,134.8,128.3,113.8,55.5,52.3,45.9,30.7,28.7,19.9,19.6,13.6,13.5;HR-ESI-MSm/z:Calcd for C16H26N2O3SNa{[M+Na]+}349.1562,found 349.1568。
3i:产率65%;1H NMRδ:8.37(s,1H),7.84~7.87(m,2H),7.10~7.19(m,4H),6.94~6.98(m,2H),3.92(q,J=7.2Hz,2H),3.86(s,1H),1.16(t,J=7.2Hz,3H);13C NMRδ:162.5,157.9,138.1,138.0,133.8,128.7,125.9,125.8,116.9,116.7,114.0,55.6,44.4,12.3;HR-ESI-MSm/z:Calcd for C16H17N2O3SFNa{[M+Na]+}359.0836,found 359.0819。
3j:产率88%;1H NMRδ:8.14(s,1H),7.74(d,J=8.0Hz,2H),7.24(d,J=8.0Hz,2H),3.35(t,J=7.6Hz,2H),3.25(t,J=7.6Hz,2H),2.39(s,3H),1.54~1.67(m,4H),0.90(t,J=7.6Hz,3H),0.85(t,J=7.6Hz,3H);13C NMRδ:158.9,142.2,139.8,129.3,126.3,54.2,47.8,21.8,21.4,19.9,11.2,10.8;HR-ESI-MSm/z:Calcd for C14H22N2O2SNa{[M+Na]+}305.1294,found 305.1284。
3k:产率43%;1H NMRδ:7.82(d,J=8.8Hz,2H),7.27~7.33(m,3H),7.20~7.24(m,2H),6.87~6.92(m,2H),4.69(s,2H),3.84(s,3H),3.30(bro,2H),3.17(bro,2H),1.74~1.80(m,4H);13C NMRδ:165.9,161.8,136.3,135.8,128.7,128.2,128.1,127.8,113.6,55.5,53.3,48.3,28.7,22.2,19.6;HR-ESI-MSm/z:Calcd for C19H22N2O3SNa{[M+Na]+}381.1243,found 381.1234。
1.3 体外抗肿瘤活性测定[7]
取对数生长期癌细胞A549,HCT116和HepG2,用完全培养液调整细胞浓度为2.0×104/mL接种到96孔板上,每孔板100μL,放入培养箱中培养24h后更换不同浓度药物的完全培养基继续培养48h(以0.1%DMSO溶液做空白对照,紫杉醇作为阳性对照药)。加入MTT 20μL (5mg·mL-1),孵育4h;除去培养基,加入DMSO(150μL),振荡15min后用酶标于570nm处测定吸光度,取平均值,计算相对细胞抑制生长率。
2.1 反应条件优化
以合成3j为模板,考察金属催化剂及其用量对反应的影响,结果见表1。由表1可见,在用量(20mol%)相同时,以CuCl为催化剂时,反应效果最好,产率最高(88%)。由表1还可见,在催化剂(CuCl)相同情况下,随着其用量的增加,产率增加;当用量为20mol%时,产率达到顶峰(88%);再增加用量,产率无变化。
较佳催化剂为CuCl,用量为20mol%。
2.2 抗肿瘤活性
3的抗肿瘤活性结果见表2。由表2可见,3a~3c对A549的抑制率超过70%,3b达82%,优于紫杉醇(31%)。从结构上看,叔胺取代基较小,有利于增加对A549的抑制活性,3c对HCT116的抑制率达80%。R为甲氧基比R为甲基的抗肿瘤活性更好;3g和3i对三种肿瘤细胞均具有一定抑制活性;R4为芳香基团时(3d~3i和3k),对HepG2的抑制活性更有利。
表1 催化剂及其用量对3j产率的影响*Table1 Effect of catalysts and their amount on the yield of 3j
*反应条件同1.2
表2 3a~3k的抗肿瘤活性*Table2 Antitumor activities of 3a~3k
*c(3)20μg·mL-1;A549:人肺癌细胞;HCT116:人结肠癌细胞;HepG2:人肝癌细胞
以叔氨为底物,磺酰叠氮为氮源,氯化亚铜为催化剂(用量20mol%),经胺化反应合成了一系列磺酰脒衍生物(3a~3k)。该方法具有原料简单易得、催化剂价廉、操作简单和产率较高等优点。
初步活性筛选结果表明:3a~3k对A549,HCT116和HepG220肿瘤细胞表现出一定抑制活性,其中N,N-二乙基-N′-对甲氧基苯磺酰脒(3b)对A549的抑制率为82%;N,N-二丙基-N′-对甲氧基苯磺酰脒(3c)对人结肠癌细胞HCT116的抑制率为80%,均表现出较好的抗肿瘤活性。磺酰脒衍生物的进一步结构修饰与活性筛选的研究正在进行中。
[1] Kamel M M,Ali H I,Anwar M M.Synthesis,antitumor activity and molecular docking study of novel sulfonamide-Schiff’s bases,thiazolidinones,benzothiazinones and theirC-nucleoside derivatives[J].Eur J Med Chem,2010,45(2):572-580.
[2] Roberts W G,Ung E,Whalen P,etal.Adhesion kinase inhibitor,PF-562,271antitumor activity and pharmacology of a selective focal[J].Cancer Res,2008,68(6):1935-1944.
[3] Brzozowski Z,Sczewski F,Gdaniec M.Synthesis,molecular structure and anticancer activity of 1-allyl-3-amino-2-(4-chloro-2-mercaptobenzenesulphonyl)guanidine derivatives[J].Eur J Med Chem,2002,37(4):285-293.
[4] Xu X L,Li X N,Ma L,etal.An unexpected diethyl azodicarboxylate-promoted dehydrogenation of tertiaryamine and tandem reaction with sulfonyl azide[J].J Am Chem Soc,2008,130(43):14048-14049.
[5] Waser J,Gaspar B,Nambu H,etal.Hydrazines and azides via the metal-catalyzed hydrohydrazination and hydroazidation of olefins[J].J Am Chem Soc,2006,128(35):11693-11712.
[6] Terunobu S,Suguru Y,Junji I.1,8-Bis(diphenylmethylium)naphthalenediyl dication as an organic oxidant:Synthesis of benzidines via self-coupling ofN,N-dialkylanilines[J].Org Lett,2004,6(24):4563-4565.
[7] Mossman T.Rapid colorimetric assay for cellular growth and survival:Application to proliferation and cytotoxic assays[J].J Immunol Methods,1983,65(1-2):55-63.
SynthesisandAntitumorActivitiesofSulfonylAmidineDerivatives
LIU Fei, LIU Nan,HE Ling
(West China School of Pharmacy,Sichuan University,Chengdu 610041,China)
Eleven sulfonyl amidine derivatives(3a~3k)were synthesized by “one-pot” using tertiaryamines as the substrate,sulfonyl azides as nitrogen source and CuCl as the catalyst.The structures were characterized by1H NMR,13C NMR and HR-ESI-MS.3c,3e~3iand3kwere new compounds.Theinvitroantitumor activities of3a~3kwere tested by MTT method.The results showed that3a~3kexhibited better antitumor activities agast A549,HCT116and HepG220cells at 20μg·mL-1.The inhibition ofN,N-dipropyl-N′-tosylformimidamide(3b)against A549cells was 82%,andN′[(4-methoxyphenyl)sulfonyl]-N,N-dipropylformimidamide(3c)against HCT116cells was 80%.
sulfonyl amidine;sulfonyl azide;tertiaryamine;synthesis;antitumor activity
2014-03-11;
2014-04-10
国家自然科学基金资助项目(21072131)
刘菲(1988-),女,汉族,四川内江人,硕士研究生,主要从事药物化学的合成研究。
何菱,教授,Tel.028-88503365,E-mail:lhe2001@sina.com
O623.626;O621.3
A
1005-1511(2014)04-0440-04