小学数学教学中的数学思想

2014-08-27 00:17赵厚华
江西教育C 2014年4期
关键词:边形内角数学模型

赵厚华

小学数学蕴含了许多基本的数学思想方法。在课堂教学中,向学生渗透数学思想方法,既是数学教学改革的新视角,也是实施素质教育的一个突破口。因此,在数学课堂教学中,教师除了基础知识的教学外,还应重视数学思想的渗透。

一、化归思想

所谓“化归”,可以理解为转化和归结的意思。化归思想就是把将要解决的问题化为已知的或已经解决的问题的一种数学思想方法。《数学课程标准》明确指出,要根据学生的年龄特征和教学要求,从学生熟悉的情景和已有的知识经验出发开展教学活动。因此,教师应用“化归思想”进行教学,可以促使学生把握事物的发展过程,对事物内部结构、纵横关系、数量特征等有较深刻的认识。

如在“圆的面积”教学中,教师引导学生回忆以往在推导平行四边形、三角形等图形面积计算时的方法,把圆转化成平行四边形,进而推导出圆的面积计算公式。教师从方法入手,将待解决的问题,通过某种途径进行转化,归纳成已解决或易解决的问题,最终使原问题得到解决。整个过程,教师教给了学生一种化归思想。

二、数形结合

三、不完全归纳

不完全归纳法是归纳法的类型之一,它是根据某类事物的部分对象具有(或不具有)某种属性而推断该事物的全体也具有(或不具有)这种属性。在小学《数学》教材中,很多教学内容都可以运用这种方法。

如在教学“三角形的内角和”后,涉及求四边形、五边形等凸n边形的内角和,这时可以让学生进行观察、分析:当n=3时,已知三角形的内角和为180°;当n=4时,凸四边形可分成两个三角形,因此内角和为2×180°;当n=5时,凸五边形可分成三个三角形,因此内角和为3×180°;当n=6时,凸六边形可分成四个三角形,因此内角和为4×180°。通过对以上特殊情况的观察分析,可以归纳出:凸n边形可分成(n-2)个三角形,因此凸n边形的内角和为(n-2)×180°。

四、数学模型

《数学课程标准》明确指出:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等各方面得到进步与发展。”因此,引导学生运用已有的数学知识,进行观察、实验、比较、猜想、分析、综合、抽象和归纳,将实际问题转化为数学问题,建立数学模型。

问:涂色部分可以用来表示吗?为什么?学生说:“不能用来表示,因为两部分不相等,没有平均分。”此时,学生已朦朦胧胧地建立了分数的模型。接着让学生分一个饼:把一个饼,分给幼儿园的四个小朋友,怎样分比较合理?学生讨论后,认为应该分成相等的四份才比较合理、公平。这时教师告诉学生每个小朋友都得到四份中的一份,像这样的一份,就可以用来表示。接下来通过进一步认识分数及分数简单的大小比较,学生建立起了几分之一的数学模型:几份中的一份就是几分之一。有了这个模型,再让学生应用模型进行练习,解决身边的数学问题,达到学以致用、巩固新知的目的。

在整个教学过程中,教师将数学知识与技能、思想与方法、情感与态度等目标进行了有机整合,让学生亲历动手操作、实验、建立数学模型、应用数学模型的探索过程。这样,既加深了学生对分数的理解,又使学生体会了数学模型方法在学习知识和解决问题中的价值,获得了成功解决问题的情感体验。

(作者单位:江苏省仪征市陈集镇中心小学)

责任编辑:刘 林endprint

小学数学蕴含了许多基本的数学思想方法。在课堂教学中,向学生渗透数学思想方法,既是数学教学改革的新视角,也是实施素质教育的一个突破口。因此,在数学课堂教学中,教师除了基础知识的教学外,还应重视数学思想的渗透。

一、化归思想

所谓“化归”,可以理解为转化和归结的意思。化归思想就是把将要解决的问题化为已知的或已经解决的问题的一种数学思想方法。《数学课程标准》明确指出,要根据学生的年龄特征和教学要求,从学生熟悉的情景和已有的知识经验出发开展教学活动。因此,教师应用“化归思想”进行教学,可以促使学生把握事物的发展过程,对事物内部结构、纵横关系、数量特征等有较深刻的认识。

如在“圆的面积”教学中,教师引导学生回忆以往在推导平行四边形、三角形等图形面积计算时的方法,把圆转化成平行四边形,进而推导出圆的面积计算公式。教师从方法入手,将待解决的问题,通过某种途径进行转化,归纳成已解决或易解决的问题,最终使原问题得到解决。整个过程,教师教给了学生一种化归思想。

二、数形结合

三、不完全归纳

不完全归纳法是归纳法的类型之一,它是根据某类事物的部分对象具有(或不具有)某种属性而推断该事物的全体也具有(或不具有)这种属性。在小学《数学》教材中,很多教学内容都可以运用这种方法。

如在教学“三角形的内角和”后,涉及求四边形、五边形等凸n边形的内角和,这时可以让学生进行观察、分析:当n=3时,已知三角形的内角和为180°;当n=4时,凸四边形可分成两个三角形,因此内角和为2×180°;当n=5时,凸五边形可分成三个三角形,因此内角和为3×180°;当n=6时,凸六边形可分成四个三角形,因此内角和为4×180°。通过对以上特殊情况的观察分析,可以归纳出:凸n边形可分成(n-2)个三角形,因此凸n边形的内角和为(n-2)×180°。

四、数学模型

《数学课程标准》明确指出:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等各方面得到进步与发展。”因此,引导学生运用已有的数学知识,进行观察、实验、比较、猜想、分析、综合、抽象和归纳,将实际问题转化为数学问题,建立数学模型。

问:涂色部分可以用来表示吗?为什么?学生说:“不能用来表示,因为两部分不相等,没有平均分。”此时,学生已朦朦胧胧地建立了分数的模型。接着让学生分一个饼:把一个饼,分给幼儿园的四个小朋友,怎样分比较合理?学生讨论后,认为应该分成相等的四份才比较合理、公平。这时教师告诉学生每个小朋友都得到四份中的一份,像这样的一份,就可以用来表示。接下来通过进一步认识分数及分数简单的大小比较,学生建立起了几分之一的数学模型:几份中的一份就是几分之一。有了这个模型,再让学生应用模型进行练习,解决身边的数学问题,达到学以致用、巩固新知的目的。

在整个教学过程中,教师将数学知识与技能、思想与方法、情感与态度等目标进行了有机整合,让学生亲历动手操作、实验、建立数学模型、应用数学模型的探索过程。这样,既加深了学生对分数的理解,又使学生体会了数学模型方法在学习知识和解决问题中的价值,获得了成功解决问题的情感体验。

(作者单位:江苏省仪征市陈集镇中心小学)

责任编辑:刘 林endprint

小学数学蕴含了许多基本的数学思想方法。在课堂教学中,向学生渗透数学思想方法,既是数学教学改革的新视角,也是实施素质教育的一个突破口。因此,在数学课堂教学中,教师除了基础知识的教学外,还应重视数学思想的渗透。

一、化归思想

所谓“化归”,可以理解为转化和归结的意思。化归思想就是把将要解决的问题化为已知的或已经解决的问题的一种数学思想方法。《数学课程标准》明确指出,要根据学生的年龄特征和教学要求,从学生熟悉的情景和已有的知识经验出发开展教学活动。因此,教师应用“化归思想”进行教学,可以促使学生把握事物的发展过程,对事物内部结构、纵横关系、数量特征等有较深刻的认识。

如在“圆的面积”教学中,教师引导学生回忆以往在推导平行四边形、三角形等图形面积计算时的方法,把圆转化成平行四边形,进而推导出圆的面积计算公式。教师从方法入手,将待解决的问题,通过某种途径进行转化,归纳成已解决或易解决的问题,最终使原问题得到解决。整个过程,教师教给了学生一种化归思想。

二、数形结合

三、不完全归纳

不完全归纳法是归纳法的类型之一,它是根据某类事物的部分对象具有(或不具有)某种属性而推断该事物的全体也具有(或不具有)这种属性。在小学《数学》教材中,很多教学内容都可以运用这种方法。

如在教学“三角形的内角和”后,涉及求四边形、五边形等凸n边形的内角和,这时可以让学生进行观察、分析:当n=3时,已知三角形的内角和为180°;当n=4时,凸四边形可分成两个三角形,因此内角和为2×180°;当n=5时,凸五边形可分成三个三角形,因此内角和为3×180°;当n=6时,凸六边形可分成四个三角形,因此内角和为4×180°。通过对以上特殊情况的观察分析,可以归纳出:凸n边形可分成(n-2)个三角形,因此凸n边形的内角和为(n-2)×180°。

四、数学模型

《数学课程标准》明确指出:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等各方面得到进步与发展。”因此,引导学生运用已有的数学知识,进行观察、实验、比较、猜想、分析、综合、抽象和归纳,将实际问题转化为数学问题,建立数学模型。

问:涂色部分可以用来表示吗?为什么?学生说:“不能用来表示,因为两部分不相等,没有平均分。”此时,学生已朦朦胧胧地建立了分数的模型。接着让学生分一个饼:把一个饼,分给幼儿园的四个小朋友,怎样分比较合理?学生讨论后,认为应该分成相等的四份才比较合理、公平。这时教师告诉学生每个小朋友都得到四份中的一份,像这样的一份,就可以用来表示。接下来通过进一步认识分数及分数简单的大小比较,学生建立起了几分之一的数学模型:几份中的一份就是几分之一。有了这个模型,再让学生应用模型进行练习,解决身边的数学问题,达到学以致用、巩固新知的目的。

在整个教学过程中,教师将数学知识与技能、思想与方法、情感与态度等目标进行了有机整合,让学生亲历动手操作、实验、建立数学模型、应用数学模型的探索过程。这样,既加深了学生对分数的理解,又使学生体会了数学模型方法在学习知识和解决问题中的价值,获得了成功解决问题的情感体验。

(作者单位:江苏省仪征市陈集镇中心小学)

责任编辑:刘 林endprint

猜你喜欢
边形内角数学模型
多边形内角和再探
组合循环生成法在柯克曼三元系中的应用
AHP法短跑数学模型分析
活用数学模型,理解排列组合
三角与数列试题精选
三角形分割问题
Q22、Q25 mmCr- Ni-Mo、Cr-Ni-W系列正七边形中空钎钢的研发
研究正n边形内角的度数
古塔形变的数学模型
4.4 边形和特殊四边形