王 志 国,向 俊 尤,万 素 磊,武 柯 含,鲁 毅,赵 建 军
(包头师范学院 物理科学与技术学院,内蒙古 包头 014030)
将原料La2O3、Gd2O3、MnCO3和SrCO3通过固相反应法合成(La0.9Gd0.1)4/3Sr5/3Mn2O7多晶样品。实验中所用的氧化物纯度都大于99.9%。充分混合研磨按比例称量的各组分氧化物,将研磨后粉末在1000℃下预烧12h。然后再将预烧后的粉末研磨并在相同条件下进行第二次预烧,最后,将两次预烧后的粉末研磨、压片。并将片状样品在1350℃煅烧24h并随炉冷却,最后,得到外观平整、坚硬而无裂痕的圆形块状样品。用X射线衍射仪检测样品的单相性。样品的磁化强度与温度的关系(M-T曲线)和电阻与温度的关系(R-T曲线)是通过美国Quantum Design公司设计的PPMS(the Physical Property Measurement System,PPMS-141)测量,测量温度范围为15K-300K。
图1是(La0.9Gd0.1)4/3Sr5/3Mn2O7样品的X射线衍射图。其衍射图谱由Sr3Ti2O7和ABO3型钙钛矿相的衍射峰共同组成(ABO3相的衍射峰用箭头标出),并且(105)和(110)峰的相对强度发生了变化,这表明样品是由Sr3Ti2O7和ABO3结构的相共同组成。由于在双层钙钛矿结构(La0.9Gd0.1)4/3Sr5/3Mn2O7中,离子半径较小的Gd3+会优先占据岩盐层的R位[10,11],随着Gd3+的含量的增加,岩盐层内的失配效应和应力增加,这样会导致双层钙钛矿的结构不稳定,从而发生结构相分离生成无限层(ABO3)的钙钛矿相。
图1:室温下(La0.9Gd0.1)4/3Sr5/3Mn2O7的X射线衍射谱
图2:0.1T磁场下(La0.9Gd0.1)4/3Sr5/3Mn2O7样品的磁化强度随温度的变化关系,插图表示dM/dT与T的关系
图3:在温度范围内,(a)、(b)、(c)和(d)分别为样品的R-T曲线ln(R/T)—1/T曲线、lnR—1/T曲线和lnR—T-1/4曲线
〔参考文献〕
[1]赵建军,等. 钙钛矿锰氧化物Nd0.5Sr0.3Ba0.2MnO3多晶的磁性和相分离 [J]. 内蒙古师范大学学报:自然科学汉文版,2009,38(1):48-51.
[2]Zhao Jian-Jun, Lu Yi, Haosi Ba-Yar, et al. Spontaneous magnetization and resistivity jumps in bilayered manganite (La0.8Eu0.2)4/3Sr5/3Mn2O7single crystals [J]. Chin Phys B, 2008, 17(07): 2717(1-4).
[3]Kimura T Tomioka Y Kuwahara H, et al. Interplane tunneling magnetoresistance in a layered manganite crystal [J]. Science, 1996, 274:1698-1701.
[4]Hirota K, Ishihara S, Fujioka H, et al. Spin dynamical properties and orbital state of the layered perovskite La2-2xSr1+2xMn2O7(0.3 [5]Argyriou D N, Mitchell J F, Radaelli P J, et al. Lattice effects and magnetic structure in the layered colossal magnetoresistance manganite La2-2xSr1+2xMn2O7(x=0.3) [J]. Phys Rev B, 1999, 59:8695-8702. [6]Perring T G, Aeppli G, Moritomo Y, et al. Antiferromagnetic short range order in a two-dimensional manganite exhibiting giant magnetoresistance [J]. Phys Rev Lett, 1997, 78: 3197-3200. [7]Liu L, Zhang L J, Niu L Y, et al. Effect of sintering temperature on the structure and transport properties of La4/3Sr5/3Mn2O7[J]. Material Science and Engineering B, 2005, 117: 227-230. [8]Liu L, Xia Z C, Yuan S L, et al. Electrical transport and magnetic properties of La4/3Sr5/3Mn2O7[J]. Material Science and Engineering B, 2006, 127: 55-57. [9]Chattopadhyay S, Giri S and Majumdar S. Glassy magnetic ground state in La4/3Sr5/3Mn2O7: Role of first order phase transition and short range antiferromagnetic correlations [J]. J Appl Phys, 2012, 112: 083915. [10]Shannon R D, Prewitt C T.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acted crystallogr A, 1976 32:751-767. [11]Battle P D Mark A, Green N, et al. Control of electronic properties by lanthanide size and manganese oxidation state in the Mn3+/Mn4+Ruddlesden-Popper phasesLn2-xSr1+xMn2O7Vente [J] . Chem Mater, 1997, 7: 977-988. [12]Zhang J, Wang F W, Zhang Z Y, et al. Effect of Lanthanide substitution on structure and magnetic properties in layered perovskit La1.2Sr1.8Mn2O7[J]. Mater sci Eng B, 2000, 76(1):6-9. [13]Wang A H, Liu Y, Zhang Z Y, et al. Magnetic entropy change and colossal magnetoresistance effect in the layered perovskite La1.34Sr1.66Mn2O7,Solid State Common [J]. 2004,130 (3-4):293-269.