郭瑞广 胡天余
(濮阳同力水泥有限公司,河南 濮阳 457000)
估算烷烃类有机物同分异构体正常沸点的新方法
郭瑞广 胡天余
(濮阳同力水泥有限公司,河南 濮阳 457000)
元素与化学键贡献法对有机物正常沸点的估算与基团贡献法相比较,其估算精度更高,但该方法的缺点是对同一类的同分异构体则不能区分。本文针对有机物同分异构体的特点提出了用于估算的5种数学模型,将计算值与文献的实验值比较。
估算;基团贡献法;元素与化学键贡献法;同分异构体;正常沸点
1.1 基团贡献法
基团贡献法:将纯物质或混合物的物性看成是由构成该物质的分中各种基团对物质贡献的总和。这样就能用为数有限的基团参数去关联大量物质的性质,并去推算未知体系的性质。基团性质的加和方法是基于Langmuir的分子中基团独立作用的假设,基团的划分都是建立在官能团的基础之上的。有机物的数量是无法计算的,但构成这些有机物的基团数为数不多,只有数十个。因此,从基团参数出发推算混合物的物性具有广泛性和应用性灵活的特点,使物性的预测大为简化。事实上,一分子中各基团的作用受该分子中其他基团作用的影响。因此基团贡献法只是一种近似的计算方法。
1.1.1 Joback估算式子
基团贡献法对于正常沸点的估算常用的是Joback法
其中,i代表第i种基团,Δfi表示第i种基团对具体物性的贡献值,ni是分子中第i中基团的个数。
1.1.2 Joback法基团贡献值表
表 1 Joback法的部分基团贡献值
1.2 估算正常沸点的关联式
其中ni为化合物中i类的基团数目;Tb为正常沸点;△Tb为i基团贡献值;x=-50.554,y=2.237。
其中ni为化合物中i类的基团数目;Tb为正常沸点;△Tb为i基团贡献值;x=207.023,y=257.323,
其中ni为化合物中i类的基团数目;Tb为正常沸点;△Tb为i基团贡献值;x=36.661,y=0.5152,M为相对分子质量。
其中ni为化合物中i类的基团数目;Tb为正常沸点;△Tb为i基团贡献值;x=43.202,y=40.445,z=0.493
其中ni为化合物中i类的基团数目;Tb为正常沸点;△Tb为i基团贡献值;x=50.497,y=0.512,z=-69.413,M为相对分子质量。
传统的Joback方法能够区分有机物同分异构体的正常沸点,但是估算精度较差,对于估算精度要求较高的工业设计是不能满足。而元素和化学键贡献法估算有机物正常沸点的精度较高,但不能区分同分异构体,如此,根据这种思路。本文提出了5种估算精度高且能区分同分异构体的数学模型:
其中Tb是用数学模型1计算出烷烃的正常沸点值,Tbj是用Joback方法估算的正常沸点,Tb1是用关联式1估算的正常沸点。
其中Tb是用数学模型1计算出烷烃的正常沸点值,Tbj是用Joback方法估算的正常沸点,Tb2是用关联式1估算的正常沸点。
其中Tb是用数学模型1计算出烷烃的正常沸点值,Tbj是用Joback方法估算的正常沸点,Tb3是用关联式1估算的正常沸点。
其中Tb是用数学模型1计算出烷烃的正常沸点值,Tbj是用Joback方法估算的正常沸点,Tb4是用关联式1估算的正常沸点。
其中Tb是用数学模型1计算出烷烃的正常沸点值,Tbj是用Joback方法估算的正常沸点,Tb5是用关联式1估算的正常沸点。
本文针对元素与化学键贡献法估算有机物正常沸点时,针对同一类的同分异构体的正常沸点不能够区分这一缺点,与传统的基团贡献法相结合,提出了解决此类问题的新的方法和5个相关的估算数学模型,通过对结果数据的对比分析5种模型的AAPE(平均相对误差)分别是0.658%、1.746%、0.680%、0.928%、0.623%,由此可见模型5的AAPE(平均相对误差)最小,即估算精度高,准确性好。这种估算方法为化工流程模拟、工程设计计算及应用研究提供较为准确的方法。
[1]高保娇,薛永强.基团贡献法估算物性的进展[J].山西化工,1997,3:21-25.
[2]估算有机物正常沸点的元素和化学键贡献法[J].化工进展,2007.
O621.2
A
1671-0037(2014)05-83-1