岳海青
【摘 要】课堂导入是教师引导学生参与学习的过程和手段,它是课堂教学的必需环节,也是教师必备的一项教学技能;它既是学生主体地位的依托,也是教师主导作用的体现。恰当的导入利于营造良好的教学情境,集中学生的注意力,激发学习兴趣,启迪学生积极思维,唤起求知欲,为良好的教学效果的取得奠定基础。
【关键词】课堂教学;导入
一、课堂导入的原则和要求
数学课的导入形式多种多样,但不管采用什么形式的导入,其关键是要根据学生的心理特点、教材特点,创设最佳的课堂氛围和环境,最终目的是调动学生内在的积极因素,激发学生“内在”的学习激情,充分发挥他们的主观能动性,极大地促进学生的自主学习。
(1)导入必须服务于教学目标。课堂导入,一定要根据既定的教学目标来精心设计,它必须服务于教学目标,有利于教学目标的实现,它应当成为完成教学目标的一个必要而有机的部分。
(2)导入必须服从于教学内容。课堂导入,或者是教学内容的必要知识准备和补充,或者是教学内容的重要组成部分,或者是有利于教学内容的学习与理解内容。导入的设计必须服从于教学内容的需要。
(3)导入必须符合于学生实际。学生是教学的主体,教学内容的好坏,要通过学生的学习来体现。因而导语的设计要从学生的实际出发,既要考虑学生的年龄,性格特征,又要考虑学生的知识能力水平。小学生宜采用形象直观的、趣味性强的导入方式,而对高中生则应多用类比联想、探究等方式。
(4)导入必须受制于课型需要。不同的课型,其导入方式显然有所不同,新授课更多的是注重温故知新、架桥铺路,寻求新、旧知识之间的联系;习题课则偏重于知识的巩固、应用和拓展;复习课则注重分析比较、归纳总结,形成知识系统,提炼数学思想方法。不能用新授课的导语去讲复习课,也不能用复习课的导语去应付新授课,否则就起不到导语应起的作用。因此,导入设计必须因课型的不同而有所不同。
(5)导入必须遵循于简洁性和多样性。导入设计,要简洁、短小精炼,一般三分钟左右,时间过长就会喧宾夺主。如果导入的时间过短,又会使课堂导入显得苍白无力,达不到预期的教学目的和效果。
(6)导入必须注意方法的灵活性。课堂导入,“导”无定法,切忌鹦鹉学舌,东施效颦。教师应针对不同的教材和教学内容采用灵活多变的课堂导入方式;即便是同一教材、同一教学内容,课堂导入的方法也应因时因地因对象而异,既要具有趣味性又要兼顾启发性。
二、课堂导入的方法与技巧
(1)直接导入法。直接导入法是教师直接从课本的课题中提出新课的学习重点、难点和教学目的,以引起学生的注意,诱发探求新知识的兴趣,使学生直接进入学习状态。它的设计思路:教师用简捷明快的讲述或设问,直接点题导入新课。
(2)复习导入法。复习导入法即所谓 “温故而知新”,它利用数学知识之间的联系导入新课,淡化学生对新知识的陌生感,使学生迅速将新知识纳入原有的知识结构中,能有效降低学生对新知识的认知难度。它的设计思路:复习与新知识(新课内容)相关的旧知识(学生已学过的知识),分析新旧知识的联系点,围绕新课主题设问,让学生思考,教师点题导入新课。
运用此法要注意如下几点:一要找准新旧知识的联结点,而联结点的确定又建立在对教材认真分析和对学生深入了解的基础之上。二是搭桥铺路,巧设契机。复习、练习、提问等都只是手段,一方面要通过有针对性的复习为学习新知识作好铺垫,另一方面在复习的过程中又要通过各种巧妙的方式设置难点和疑问,使学生思维暂时出现困惑或受到阻碍,从而激发学生思维的积极性,创造教授新知识的契机。
(3)设疑导入法。设疑导入法即所谓 “学起于思,思源于疑”,是教师通过设疑布置“问题陷阱”,学生在解答问题时不知不觉掉进“陷阱”,使他们的解答自相矛盾,引起学生积极思考,进而引出新课主题的方法。它的设计思路:教师提出问题,学生解答问题,针对学生出现的矛盾对立观点,引发学生的争论与思考,在激起学生对知识的强烈兴趣后,教师点题导入新课。
运用此法必须做到:一是巧妙设疑。要针对教材的关键、重点和难点,从新的角度巧妙设问。此外,所设的疑点要有一定的难度,要能使学生暂时处于困惑状态,营造一种 “心求通而未得通,口欲言而不能言”的情境。二是以疑激思,善问善导。设疑质疑还只是设疑导入法的第一步,更重要的是要以此激发学生的思维,使学生的思维尽快活跃起来。因此,教师必须掌握一些设问的方法与技巧,并善于引导,使学生学会思考和解决问题。
(4)悬念导入法。所谓悬念,通常是指对那些悬而未决的问题和现象的关切心情。悬念导入法制造悬念的目的主要有两点:一是激发兴趣,二是启动思维。悬念一般是出乎人们预料,或展示矛盾,或让人迷惑不解,常能造成学生心理上的焦虑、渴望和兴奋,只想打破砂锅问到底,尽快知道究竟。一般来讲,数学中的悬念需要教师在深入钻研教材与分析学生知识储备的基础上进行精心设计、精心准备。
运用这种方法需要注意,悬念的设置要从学生的 “最近发展区”出发,恰当适度。不悬,难以引发学生的兴趣;太悬,学生百思不得其解,都会降低学生的积极性。只有不思不解,思而可解才能使学生兴趣高涨,自始至终围绕问题,步步深入领会问题本质,收到更好的教学效果。
(5)类比导入法。类比导入法是以已知的数学知识类比未知的数学新知识,以简单的数学现象类比复杂的数学现象,使抽象的问题形象化,引起学生丰富的联想,调动学生的非智力因素,激发学生的思维活动。
例如,“圆锥曲线”一章的学习,学习“椭圆”知识可用学生已有的“圆的知识”类比导入,而后续知识双曲线与抛物线的学习则可用已有的椭圆知识类比导入。
类比导入法运用了对比分析的做法,联系旧知,提示新知。这种比较有利于学生明白前后知识的联系与区别,而教师引导学生比较的知识的各个侧面,揭示了教学的重点和难点,对前后联系密切的知识教学具有温故知新的特殊作用。运用这种方法一定要注意类比的贴切、恰当,两种知识之间有很强的可类比性,才能使学生同中求异、异中求同,深刻理解并掌握知识。
(6)数学史导入法。数学史引入法是利用数学家的传记或数学发展史导入新课的方法。这种方法可以通过榜样的力量去感染学生,调动他们的学习积极性,唤起他们的探索热情。它的设计思路:先讲述与新课内容密切相关的数学史,利用科学家追求真理、勇于探索的精神去感动学生,同时唤起他们强烈的求知欲,最后教师点题引入新课。
例如:在学习 “二项式定理”时,教师向学生介绍我国古代著名的“杨辉三角”,并介绍其发现的艰苦历程,激起学生学习的热情与积极性,进而导入新课。
(7)电教导入法。电教导入法是把不便于课堂直接演示和无法演示的数学现象或规律制作成课件或幻灯片,用计算机模拟或放映图片来创设情境,激发学生的学习兴趣,然后教师点题导入新课。幻灯、录像、投影仪、计算机等电教设备能为学生创造良好的学习环境,从而调动学生的学习积极性和主动性。
例如,在学习“数学归纳法”时,教师利用计算机制作三维动画模拟动态的多米诺骨牌的推倒过程,创设数学归纳法的问题情境,使抽象的数学现象及其规律变的形象直观、趣味横生,此时引入新课迎合了学生强烈的求知欲。
总之,在实际教学中,我们要根据数学学科的特点、内容及课的类型灵活地选择相应的导语方式,设计出篇篇有异、引人入胜的导语,使课堂教学更加完美,以求在教学过程中重重地敲响“第一锤”,从而收到吸引学生注意、激发学习兴趣、增加参与感的教学效果。