高危型人乳头瘤病毒基因组整合的研究进展

2014-03-18 21:31:33叶雪瑞董瑞李立群谷鸿喜商庆龙
微生物与感染 2014年1期
关键词:癌基因危型染色体

叶雪瑞,董瑞,李立群,谷鸿喜,商庆龙

哈尔滨医科大学微生物学教研室,哈尔滨 150081

高危型人乳头瘤病毒(human papillomavirus,HPV)包括HPV16、HPV18、HPV33、HPV58等多种型别,与宫颈癌等多种肿瘤的发生有密切关系。其中,HPV16和HPV18为主要型别。高危型HPV在致癌中,尤其是在以宫颈癌为主的多种癌症发生过程中,经常出现病毒DNA整合入宿主基因组的突变现象。整合过程是多种肿瘤发生过程中的一个标志性事件,但目前对病毒整合是否有助于转化过程仍有争议。本文就近年来高危型HPV基因组整合位点、整合过程及相关机制的研究进展作一综述。

1 高危型HPV基因组整合的发生过程

1.1 现阶段确认的高危型HPV基因组整合过程

高危型HPV基因组为双链DNA,全长约8 kb。基因组包括编码非结构蛋白的早期区(early region,E)、编码衣壳蛋白的晚期区(late region,L)和非编码的上游调控区(upstream regulation region,URR)。在整合发生时,HPV基因组出现部分缺失,部分基因整合到宿主基因组中。整合前的病毒完整状态称为HPV游离体(episome),整合后的状态称为HPV整合体(integrant)。整合将环状HPV基因组转换成一个线性截短的DNA,其URR、E6癌基因和E7癌基因始终保留完整[1]。目前认为,整合过程中E2基因的丢失导致E6和E7癌基因失去控制而大量表达。E6和E7蛋白使P53和视网膜母细胞瘤蛋白(retinoblastoma protein,PRb)失活,使其与其他许多细胞蛋白的相互作用缺失,引起宿主细胞转化[2-5]。

在宫颈系列病变组织中也观察到高危型HPV基因组整合频率增加[6]。在HPV18诱发的宫颈癌病例中基因组整合达100%[7]。但也有部分HPV16阳性宫颈癌仅出现HPV游离体,表明整合相关通路和游离体相关通路在HPV16引发的宫颈癌中都可能存在[8,9]。

1.2 高危型HPV基因组整合与染色体不稳定之间的相互关系

目前对高危型HPV基因组整合与染色体发生的时间顺序和因果关系的认识仍有争议。有研究认为,宫颈病变中HPVE6、E7癌基因表达失控引起染色体的不稳定[10],从而导致高危型HPV基因组整合(不同型别的高危型HPV会引起不同程度的宿主细胞染色体不稳定[11])。在整合发生过程中,肌动蛋白样蛋白6A(actin-like protein 6A,ACTL6A,或称BAF53)缺失被认为与HPVE6和E7基因的大量表达有关[12]。Edwards等发现,阿非迪霉素可降低HPV游离体的稳定性,可能影响HPV基因组整合过程[13]。也有研究认为是高危型HPV基因组整合的出现导致了染色体的不稳定,从而影响了细胞的恶性转化过程[14,15]。

另外,巨细胞病毒(cytomegalovirus,CMV)和EB病毒(Epstein-Barr virus,EBV)与HPV16共同感染被认为可能促进了HPV16基因组整合,导致宫颈癌发生[16]。氧化应激反应也被认为在HPV基因组整合过程中发挥了重要作用[17]。但这2种情况是否与染色体的不稳定性存在某种联系从而导致细胞恶性转化仍不清楚。

1.3 高危型HPV基因组整合后的影响

对HPV基因组整合导致的细胞基因突变是否促进宫颈癌发生,以及在何种程度促进宫颈癌发生,仍未有定论[18,19]。病毒基因组整合可能确保了维持细胞转化状态所需病毒癌基因的构成性表达,HPV DNA整合引起的抑癌基因失活或原癌基因激活可能是癌症发生的因素[20,21]。Schmitz等发现,HPV基因组整合过程中出现肿瘤抑制基因蓖麻锌指蛋白1(castor zinc finger 1,CASZ1)功能丧失;整合过程还可能影响细胞周期蛋白依赖性激酶2(cyclin-dependent kinase 2,CDK2)、CDK4和Bcl-6的功能[22,23]。又发现Toll样受体4(Toll-like receptor 4,TLR4)表达下调与细胞周期蛋白依赖性激酶抑制因子2A(cyclin-dependent kinase inhibitor 2A,CDKN2A,p16INK4A)表达相关,其中p16INK4A被认为是HPV基因组整合入宿主细胞的关键性标志[24]。Campitelli等发现,HPV基因组整合过程中插入突变伴随循环肿瘤DNA (circulating tumor DNA,ctDNA)的特异性分子标记,认为对宫颈癌患者具有潜在的预防和预后价值[25]。研究还发现,HPV16基因组状态影响莱普霉素B (leptomycin B)治疗HPV相关肛生殖器病损的效果[26]。

在不同型别高危型HPV感染中,基因组整合后的影响存在差异。其中,HPV18基因组整合过程中E2基因缺失,伴随病毒载量下降。Collins等认为这种情况可能导致HPV18相关疾病的轻微细胞病变现象[27]。Cheung等发现,HPV52病毒载量和基因组整合比例升高增加了宫颈病变的严重程度,模式与HPV16存在差异[28]。

2 高危型HPV基因组整合在宫颈癌发生中所起作用的支持证据

2.1 流行病学证据

高危型HPV基因组整合到宿主细胞基因组中被认为是宫颈癌发生过程中关键性的早期事件,是恶性转化的重要因素[29]。Saunier等发现,HPV16在正常组织中只以游离状态存在,整合率随宫颈病变恶性程度增加而逐渐升高,即其在宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN)Ⅰ、CINⅡ、CIN Ⅲ和侵袭性宫颈癌组织标本中逐渐升高。HPV持续感染和病变进展更多存在于整合型HPV16的宫颈组织中[30,31]。Chang等发现,检测HPV基因组载量和整合能预测HPV16 DNA持续存在和病损的进展,E2/E6比例能较好地预测宫颈癌的发生风险[32]。

2.2 实验证据

HPV基因组整合时,E1和E2开放阅读框架(open reading frame,ORF)缺失可能决定宫颈组织的恶性进程。E2基因中断,E6和E7基因表达增强,E6和E7癌蛋白通过失活P53和PRb发挥作用,使细胞生长失控从而引发癌变[33]。Häfner等研究HPV16癌基因时发现,是癌基因转录体(E6、E7)的构成性表达,而不是表达水平,对宿主细胞的转化和恶性表型的维持起决定性作用[34]。此外,整合性病毒克隆的选择发生也被认为驱动了发病过程[35]。

3 高危型HPV基因组整合在其他相关肿瘤发生中的作用

高危型HPV基因组整合在舌鳞癌(tongue squamous cell carcinoma,TSCC)、喉鳞癌、头颈癌、阴茎癌和结直肠癌等发生中发挥重要作用[36,37]。在头颈部鳞状细胞癌(head and neck squamous cell carcinoma,HNSCC)型别中,扁桃体癌与HPV显著相关。染色体不稳定性是舌鳞癌预后不良的一个指标,尤其是在HPV阳性患者中[38]。Zhang等研究发现,持续性高危型HPV感染及基因组整合与食管癌和喉鳞癌的恶性转化有关[39-41]。在HPV低载量HNSCC患者中,E6/E7 mRNA表达水平在整合时仍很低[42]。

4 高危型HPV基因组整合的检测方法

在HPV相关肿瘤的发生过程中,病毒基因组整合的发生影响了HPV基因组的存在状态和宿主基因组的整合位点。整合位点可能发生在基因组的不同位置,但在每例病例中只有1个独特的整合位点,使得HPV基因组整合位点的精确鉴定复杂化。目前,HPV基因组整合的检测方法包括聚合酶链反应(polymerase chain reaction,PCR)、原位杂交、乳头瘤病毒癌基因转录扩增(amplification of papillomavirus oncogene transcript,APOT)、多重连接依赖性探针扩增(multiplex ligation-dependent probe amplification,MLPA)、多重实时PCR等技术。为了精确定位检测,需进行原位PCR扩增DNA,还可将病毒DNA与相关靶蛋白共同表达相关联[43]。通过直接测序,APOT分析成为一种可检测HPV转录体来源和整合位点的可靠、实用工具[44]。MLPA技术采用探针和靶序列DNA杂交的方法,经连接、PCR扩增、毛细管电泳分离产物、数据收集,最后进行数据分析[45,46]。多重实时PCR检测技术简单、敏感、特异、廉价,用于检测HPV16基因组整合[47]。但是,由于HPV16型内序列变异,引物、探针和相应靶序列的不匹配将在整合检测中带来错误,因此Jiang等通过简并碱基设定改善了这种情况[48]。Xu等提出一种新的HPV16 DNA整合位点序列测定的多样化策略,检测HPV16基因组整合位点的精确核苷酸序列,将整合位点作为宫颈癌筛选的个体标记,可为患者的预后评估和治疗提供帮助[21]。

5 高危型HPV基因组整合相关机制的研究

5.1 高危型HPV整合型的克隆筛选与干扰素通路的关系

高危型HPV相关癌变过程的关键步骤是病毒游离体消失和病毒基因组整合。大多数宫颈癌标本只有一个具有转录活性的HPV基因组整合位点,这些整合位点代表早期克隆事件[20]。HPV整合体出现后发生的克隆选择压力加快了整合型的筛选过程,为新生物扩张提供了选择优势,提高了整合型HPV的比例,促进了宫颈癌的发生。HPV16游离体相关宫颈增生物的体外研究显示了这个过程[9]。研究表明,β干扰素(interferon β,IFN-β)处理仅含HPV16游离体的W12细胞后,极大促进了从游离体丢失到仅有整合体存留的进程,反而导致IFN促进了宫颈癌的发生[49]。Pett等也认为,游离体自发丢失与Ⅰ型IFN诱导产生的抗病毒基因表达增加有关[50]。

5.2 高危型HPV基因组整合发生的位点

对于HPV16基因组来说,容易断裂、坏损的位置常位于L2基因区[51]。对于宿主细胞基因组来说,病毒和细胞基因组中的整合断裂点在所有样品中都不同,可能发生在基因组的不同区域,如HPV16基因组整合位点几乎位于所有染色体[18,20,21],整合位点也常出现在染色体中的脆性位点[19]。HPV16基因组整合部位常位于癌症相关基因的附近或microRNA染色体条带中的染色体区域,其中癌症相关基因和microRNA可能受整合的HPV DNA影响,但这种可能性还需验证。如在侵袭性阴茎癌中,HPV16基因组整合发生在序列相似性家族92成员A1(family with sequence similarity 92, member A1,FAM92A1)基因所在的8q21.3染色体区域和肿瘤坏死因子受体相关蛋白1(tumor necrosis factor receptor-associated protein 1,TRAP1)基因内含子区所在的16p13.3染色体区域[52]。由于HPV16基因组整合所影响的大多数基因与肿瘤形成有关,因此,HPV DNA整合位点常被认为可能在肿瘤发生和发展中发挥重要作用[53]。

此外,也有不同观点认为,这些癌症相关基因多与整合位点有一定的距离,至今没有实验数据支持这些基因表达发生改变。因此,Dall等认为目前不能推断HPV16基因组整合引起的插入突变发挥了作用[54]。

虽然在染色体水平上存在常见的HPV插入位点,但病毒-细胞连接处的精确核苷酸序列具有差异性。因此,HPV基因组整合位点序列有潜力成为患者宫颈癌和高度宫颈病变个性化诊断、治疗监控和随访分析的肿瘤标记,有利于提高治疗策略和增加生存率[55]。Campitelli等从宫颈癌患者的循环肿瘤DNA中扩增病毒-细胞交界处的序列,作为特异性标记[25]。

目前,整合位点研究主要集中于HPV16和HPV18[7]。有研究发现,与HPV31和HPV33相比,HPV16、HPV18和HPV45常以整合状态出现,其中潜在致癌作用最高的是HPV16和HPV18[17,56]。Chaiwongkot等应用APOT分析发现,HPV58基因组整合位点位于染色体4q21、12q24和18q12[44]。Gilles等发现,HPV33感染宫颈癌细胞系CK11和CK12中整合位点位于染色体的13q33-34[57]。

5.3 低危型HPV基因组整合现象

近年来,除对高危型HPV基因组整合进行研究外,在低危型HPV中也发现了基因组整合现象。Coutlée等发现HPV6 DNA出现整合现象[58]。Huebbers等发现,醛固酮类还原酶家族1成员C3(aldo-keto reductase family 1,member C3,AKR1C3)基因下调和HPV6基因组整合标志着青春期喉乳头瘤病出现恶性转化[59],但详细发生机制有待进一步研究。

5.4 HPV基因组整合可能出现消退

Evans等发现,HPV基因组整合发生在低度宫颈病损中,而这些带有游离型和整合型HPV的病损可消退,但具体机制不明,也有待进一步研究[60]。

5.5 甲基化与高危型HPV基因组整合的关系

DNA甲基化在HPV基因组整合至宿主细胞DNA的过程中发挥了重要作用。HPV癌基因能活化DNA甲基转移酶,从而诱导肿瘤抑制基因甲基化,并导致肿瘤发生[61]。在小部分癌前病变中发现HPV16基因组在染色体中整合,在甲基化水平高的标本中更常见。随着CIN进展,L1基因甲基化比例不断增高[62]。Park等发现头颈癌中病毒的表观遗传学改变,认为病毒性表观遗传学改变发生在病毒整合至宿主基因组时[63]。Lechner等认为,在肿瘤进展和转移过程中,HPV通过多梳蛋白抑制复合体2(polycomb repressive complex 2,PRC2)靶基因,如钙黏素等,调节HNSCC的表观遗传学[64]。甲基化HPV基因的检测可能具有诊断潜力,用于评估高危个体的癌症发展风险。DNA甲基化研究有可能成为未来HPV基因组整合研究中的一个重要突破口。

6 结语

高危型HPV基因组整合是其致癌过程中的一个代表特征。流行病学和实验数据支持其在多种肿瘤发生过程中发挥重要作用。目前认为,基因组整合发生可能与染色体不稳定有关。整合可能影响宿主细胞的多种基因,甲基化和IFN也被认为参与了整合的致病机制。对影响整合位点和相关检测方法的研究已取得进展,但对整合相关的多个基础性问题,仍未有定论,有待深入研究。

[1] Wagatsuma M,Hashimoto K,Matsukura T. Analysis of integrated human papillomavirus type 16 DNA in cervical cancers: amplification of viral sequences together with cellular flanking sequences [J]. J Virol,1990,64(2): 813-821.

[2] Howie HL,Katzenellenbogen RA,Galloway DA. Papillomavirus E6 proteins [J]. Virology, 2009, 384(2): 324-334.

[3] McLaughlin-Drubin ME,Münger K. The human papillomavirus E7 oncoprotein [J]. Virology, 2009, 384(2): 335-344.

[4] Moody CA,Laimins LA. Human papillomavirus oncoproteins: pathways to transformation [J]. Nat Rev Cancer, 2010, 10(8): 550-560.

[5] Bodily J,Laimins LA. Persistence of human papillomavirus infection: keys to malignant progression [J]. Trends Microbiol, 2011, 19(1): 33-39.

[6] Ho CM,Lee BH,Chang SF,Chien TY,Huang SH,Yan CC,Cheng WF. Integration of human papillomavirus correlates with high levels of viral oncogene transcripts in cervical carcinogenesis [J]. Virus Res, 2011, 161(2): 124-130.

[7] Corden SA,Sant-Cassia LJ,Easton AJ,Morris AG. The integration of HPV-18 DNA in cervical carcinoma [J]. Mol Pathol, 1999, 52(5): 275-282.

[8] Pett M,Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis [J]? J Pathol, 2007, 212(4): 356-367.

[9] Gray E,Pett MR,Ward D,Winder DM,Stanley MA,Roberts I,Scarpini CG,Coleman N. In vitro progression of human papillomavirus 16 episome-associated cervical neoplasia displays fundamental similarities to integrant-associated carcinogenesis [J]. Cancer Res, 2010, 70(10): 4081-4091.

[10] Melsheimer P,Vinokurova S,Wentzensen N,Bastert G,von Knebel Doeberitz M. DNA aneuploidy and integration of human papillomavirus type 16 e6/e7 oncogenes in intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix uteri [J]. Clin Cancer Res, 2004, 10(9): 3059-3063.

[11] Vinokurova S,Wentzensen N,Kraus I,Klaes R,Driesch C,Melsheimer P,Kisseljov F,Dürst M,Schneider A,von Knebel Doeberitz M. Type-dependent integration frequency of human papillomavirus genomes in cervical lesions [J]. Cancer Res, 2008, 68(1): 307-313.

[12] Lee K,Lee AY,Kwon YK,Kwon H. Suppression of HPV E6 and E7 expression by BAF53 depletion in cervical cancer cells [J]. Biochem Biophys Res Commun, 2011, 412(2): 328-333.

[13] Edwards TG,Helmus MJ,Koeller K,Bashkin JK,Fisher C. Human papillomavirus episome stability is reduced by aphidicolin and controlled by DNA damage response pathways [J]. J Virol, 2013, 87(7): 3979-3989.

[14] Winder DM,Pett MR,Foster N,Shivji MK,Herdman MT,Stanley MA,Venkitaraman AR,Coleman N. An increase in DNA double-strand breaks,induced by Ku70 depletion,is associated with human papillomavirus 16 episome loss and de novo viral integration events [J]. J Pathol, 2007, 213(1): 27-34.

[15] Pett MR,Alazawi WO,Roberts I,Dowen S,Smith DI,Stanley MA,Coleman N. Acquisition of high-level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical keratinocytes [J]. Cancer Res, 2004, 64(4): 1359-1368.

[16] Szostek S,Zawilinska B,Kopec J,Kosz-Vnenchak M. Herpesviruses as possible cofactors in HPV-16-related oncogenesis [J]. Acta Biochim Pol, 2009, 56(2): 337-342.

[17] De Marco F. Oxidative stress and HPV carcinogenesis [J]. Viruses, 2013, 5(2): 708-731.

[18] Kraus I,Driesch C,Vinokurova S,Hovig E,Schneider A,von Knebel Doeberitz M,Dürst M. The majority of viral-cellular fusion transcripts in cervical carcinomas cotranscribe cellular sequences of known or predicted genes [J]. Cancer Res, 2008, 68(7): 2514-2522.

[19] Wentzensen N,Vinokurova S,von Knebel Doeberitz M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract [J]. Cancer Res, 2004, 64(11): 3878-3884.

[20] Schmitz M, Driesch C, Jansen L, Runnebaum IB, Dürst M. Non-random integration of the HPV genome in cervical cancer [J]. PLoS One, 2012, 7(6): e39632.

[21] Xu B, Chotewutmontri S, Wolf S, Klos U, Schmitz M, Dürst M, Schwarz E. Multiplex identification of human papillomavirus 16 DNA integration sites in cervical carcinomas [J]. PLoS One, 2013, 8(6): e66693.

[22] Schmitz M,Driesch C,Beer-Grondke K,Jansen L,Runnebaum IB,Dürst M. Loss of gene function as a consequence of human papillomavirus DNA integration [J]. Int J Cancer, 2012, 131(5): E593-E602.

[23] Laurenson S,Pett MR,Hoppe-Seyler K,Denk C,Hoppe-Seyler F,Coleman N,Ko Ferrigno P. Development of peptide aptamer microarrays for detection of HPV16 oncoproteins in cell extracts [J]. Anal Biochem, 2011, 410(2): 161-170.

[24] Yu L,Wang L,Li M,Zhong J,Wang Z,Chen S. Expression of Toll-like receptor 4 is down-regulated during progression of cervical neoplasia [J]. Cancer Immunol Immunother, 2010, 59(7): 1021-1028.

[25] Campitelli M,Jeannot E,Peter M,Lappartient E,Saada S,de la Rochefordière A,Fourchotte V,Alran S,Petrow P,Cottu P,Pierga JY,Lantz O,Couturier J,Sastre-Garau X. Human papillomavirus mutational insertion: specific marker of circulating tumor DNA in cervical cancer patients [J]. PLoS One, 2012, 7(8): e43393.

[26] Jolly CE,Gray LJ,Parish JL,Lain S,Herrington CS. Leptomycin B induces apoptosis in cells containing the whole HPV 16 genome [J]. Int J Oncol, 2009, 35(3): 649-656.

[27] Collins SI,Constandinou-Williams C,Wen K,Young LS,Roberts S,Murray PG,Woodman CB. Disruption of the E2 gene is a common and early event in the natural history of cervical human papillomavirus infection: a longitudinal cohort study [J]. Cancer Res, 2009, 69(9): 3828-3832.

[28] Cheung JL,Cheung TH,Tang JW,Chan PK. Increase of integration events and infection loads of human papillomavirus type 52 with lesion severity from low-grade cervical lesion to invasive cancer [J]. J Clin Microbiol, 2008, 46(4): 1356-1362.

[29] Wanram S,Limpaiboon T,Leelayuwat C,Yuenyao P,Guiney DG,Lulitanond V,Jearanaikoon P. The use of viral load as a surrogate marker in predicting disease progression for patients with early invasive cervical cancer with integrated human papillomavirus type 16 [J]. Am J Obstet Gynecol, 2009, 201(1): e1-e7.

[30] Saunier M,Monnier-Benoit S,Mauny F,Dalstein V,Briolat J,Riethmuller D,Kantelip B,Schwarz E,Mougin C,Prétet JL. Analysis of human papillomavirus type 16 (HPV16) DNA load and physical state for identification of HPV16-infected women with high-grade lesions or cervical carcinoma [J]. J Clin Microbiol, 2008, 46(11): 3678-3685.

[31] Liu SS,Tsang PC,Chan KY,Cheung AN,Chan KK,Leung RC,Ngan HY. Distribution of six oncogenic types of human papillomavirus and type 16 integration analysis in Chinese women with cervical precancerous lesions and carcinomas [J]. Tumour Biol, 2008, 29(2): 105-113.

[32] Chang L,He X,Yu G,Wu Y. Effectiveness of HPV 16 viral load and the E2/E6 ratio for the prediction of cervical cancer risk among Chinese women [J]. J Med Virol, 2013, 85(4): 646-654.

[33] Heinemann L,Woodfield L,Amer M,Hibma M. Effective induction of type 1 helper IgG 2a and cytotoxic T-cell responses in mice following immunization with human papillomavirus type 16 E2 in MF59 [J] . Viral Immunol, 2008, 21(2): 225-233.

[34] Häfner N, Driesch C, Gajda M, Jansen L, Kirchmayr R, Runnebaum IB, Dürst M. Integration of the HPV16 genome does not invariably result in high levels of viral oncogene transcripts [J]. Oncogene, 2008, 27(11): 1610-1617.

[35] Boulet GA,Benoy IH,Depuydt CE,Horvath CA,Aerts M,Hens N,Vereecken AJ,Bogers JJ. Human papillomavirus 16 load and E2/E6 ratio in HPV16-positive women: biomarkers for cervical intraepithelial neoplasia >or=2 in a liquid-based cytology setting [J]. Cancer Epidemiol Biomarkers Prev, 2009, 18(11): 2992-2999.

[36] Do HT,Koriyama C,Khan NA,Higashi M,Kato T,Le NT,Matsushita S,Kanekura T,Akiba S. The etiologic role of human papillomavirus in penile cancers: a study in Vietnam [J]. Br J Cancer, 2013, 108(1): 229-233.

[37] Pérez LO,Barbisan G,Ottino A,Pianzola H,Golijow CD. Human papillomavirus DNA and oncogene alterations in colorectal tumors [J]. Pathol Oncol Res, 2010, 16(3): 461-468.

[38] Mooren JJ,Kremer B,Claessen SM,Voogd AC,Bot FJ,Peter Klussmann J,Huebbers CU,Hopman AH,Ramaekers FC,Speel EJ. Chromosome stability in tonsillar squamous cell carcinoma is associated with HPV16 integration and indicates a favorable prognosis [J]. Int J Cancer, 2013, 132(8): 1781-1789.

[39] Zhang QY,Zhang DH,Shen ZY,Xu LY,Li EM,Au WW. Infection and integration of human papillomavirus in esophageal carcinoma [J]. Int J Hyg Environ Health, 2011, 214(2): 156-161.

[40] Liu B,Lu Z,Wang P,Basang Z,Rao X. Prevalence of high-risk human papillomavirus types (HPV-16, HPV-18) and their physical status in primary laryngeal squamous cell carcinoma [J]. Neoplasma, 2010, 57(6): 594-600.

[41] Zhang K,Li JT,Li SY,Zhu LH,Zhou L,Zeng Y. Integration of human papillomavirus 18 DNA in esophageal carcinoma 109 cells [J]. World J Gastroenterol, 2011, 17(37): 4242-4246.

[42] Deng Z,Hasegawa M,Kiyuna A,Matayoshi S,Uehara T,Agena S,Yamashita Y,Ogawa K,Maeda H,Suzuki M. Viral load,physical status,and E6/E7 mRNA expression of human papillomavirus in head and neck squamous cell carcinoma [J]. Head Neck, 2013, 35(6): 800-808.

[43] Nuovo GJ. In situ detection of human papillomavirus DNA after PCR-amplification [J]. Methods Mol Biol, 2011, 688: 35-46.

[44] Chaiwongkot A,Pientong C,Ekalaksananan T,Vinokurova S,Kongyingyoes B,Chumworathayi B,Patarapadungkit N,Siriaunkgul S,von Knebel Doeberitz M. Detection of the human papillomavirus 58 physical state using the amplification of papillomavirus oncogene transcripts assay [J]. J Virol Methods, 2013, 189(2): 290-298.

[45] Theelen W,Speel EJ,Herfs M,Reijans M,Simons G,Meulemans EV,Baldewijns MM,Ramaekers FC,Somja J,Delvenne P,Hopman AH. Increase in viral load,viral integration,and gain of telomerase genes during uterine cervical carcinogenesis can be simultaneously assessed by the HPV 16/18 MLPA-assay [J]. Am J Pathol, 2010, 177(4): 2022-2033.

[46] Theelen W,Reijans M,Simons G,Ramaekers FC,Speel EJ,Hopman AH. A new multiparameter assay to assess HPV 16/18,viral load and physical status together with gain of telomerase genes in HPV-related cancers [J]. Int J Cancer, 2010, 126(4): 959-975.

[48] Jiang M,Baseman JG,Koutsky LA,Feng Q,Mao C,Kiviat NB,Xi LF. Sequence variation of human papillomavirus type 16 and measurement of viral integration by quantitative PCR [J]. J Clin Microbiol, 2009, 47(3): 521-526.

[49] Herdman MT,Pett MR,Roberts I,Alazawi WO,Teschendorff AE,Zhang XY,Stanley MA,Coleman N. Interferon-beta treatment of cervical keratinocytes naturally infected with human papillomavirus 16 episomes promotes rapid reduction in episome numbers and emergence of latent integrants [J]. Carcinogenesis, 2006, 27(11): 2341-2353.

[50] Pett MR,Herdman MT,Palmer RD,Yeo GS,Shivji MK,Stanley MA,Coleman N. Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response [J]. Proc Natl Acad Sci USA, 2006, 103(10): 3822-2827.

[51] Li H,Yang Y,Zhang R,Cai Y,Yang X,Wang Z,Li Y,Cheng X,Ye X,Xiang Y,Zhu B. Preferential sites for the integration and disruption of human papillomavirus 16 in cervical lesions [J]. J Clin Virol, 2013, 56(4): 342-347.

[52] Annunziata C,Buonaguro L,Buonaguro FM,Tornesello ML. Characterization of the human papillomavirus (HPV) integration sites into genital cancers [J]. Pathol Oncol Res, 2012, 18(4): 803-808.

[53] Matovina M,Sabol I,GrubisiG,Gasperov NM,Grce M. Identification of human papillomavirus type 16 integration sites in high-grade precancerous cervical lesions [J]. Gynecol Oncol, 2009, 113(1): 120-127.

[54] Dall KL,Scarpini CG,Roberts I,Winder DM,Stanley MA,Muralidhar B,Herdman MT,Pett MR,Coleman N. Characterization of naturally occurring HPV16 integration sites isolated from cervical keratinocytes under noncompetitive conditions [J]. Cancer Res, 2008, 68(20): 8249-8259.

[55] Gadducci A,Guerrieri ME,Greco C. Tissue biomarkers as prognostic variables of cervical cancer [J]. Crit Rev Oncol Hematol, 2013, 86(2)104-129.

[56] Khan MJ,Castle PE,Lorincz AT,Wacholder S,Sherman M,Scott DR,Rush BB,Glass AG,Schiffman M. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice [J]. J Natl Cancer Inst, 2005, 97(14): 1072-1079.

[57] Gilles C,Piette J,Ploton D,Doco-Fenzy M,Foidart JM. Viral integration sites in human papilloma virus-33-immortalized cervical keratinocyte cell lines [J]. Cancer Genet Cytogenet, 1996, 90(1): 63-69.

[58] Coutlée F,Trottier H,Gagnon S,Koushik A,Richardson H,Roger M,Ferenczy AS,Franco EL. Low-risk human papillomavirus type 6 DNA load and integration in cervical samples from women with squamous intraepithelial lesions [J]. J Clin Virol, 2009, 45(2): 96-99.

[59] Huebbers CU,Preuss SF,Kolligs J,Vent J,Stenner M,Wieland U,Silling S,Drebber U,Speel EJ,Klussmann JP. Integration of HPV6 and downregulation of AKR1C3 expression mark malignant transformation in a patient with juvenile-onset laryngeal papillomatosis [J]. PLoS One, 2013, 8(2): e57207.

[60] Evans MF,Adamson CS,Cooper K. Evidence of HPV16 integration in low- and high-grade cervical lesions that regress demonstrated by multiple displacement amplification and Southern blot hybridisation [J]. J Clin Pathol, 2008, 61(4): 541-543.

[61] Leonard SM,Wei W,Collins SI,Pereira M,Diyaf A,Constandinou-Williams C,Young LS,Roberts S,Woodman CB. Oncogenic human papillomavirus imposes an instructive pattern of DNA methylation changes which parallel the natural history of cervical HPV infection in young women [J]. Carcinogenesis, 2012, 33(7): 1286-1293.

[62] Oka N,Kajita M,Nishimura R,Ohbayashi C,Sudo T. L1 gene methylation in high-risk human papillomaviruses for the prognosis of cervical intraepithelial neoplasia [J]. Int J Gynecol Cancer, 2013, 23(2): 235-243.

[63] Park IS,Chang X,Loyo M,Wu G,Chuang A,Kim MS,Chae YK,Lyford-Pike S,Westra WH,Saunders JR,Sidransky D,Pai SI. Characterization of the methylation patterns in human papillomavirus type 16 viral DNA in head and neck cancers [J]. Cancer Prev Res(Phila), 2011, 4(2): 207-217.

[64] Lechner M,Fenton T,West J,Wilson G,Feber A,Henderson S,Thirlwell C,Dibra HK,Jay A,Butcher L,Chakravarthy AR,Gratrix F,Patel N,Vaz F,O′Flynn P,Kalavrezos N,Teschendorff AE,Boshoff C,Beck S. Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma [J]. Genome Med, 2013, 5(2): 15.

猜你喜欢
癌基因危型染色体
高危型人乳头瘤病毒采用实时PCR检验诊断的临床研究
多一条X染色体,寿命会更长
科学之谜(2019年3期)2019-03-28 10:29:44
为什么男性要有一条X染色体?
科学之谜(2018年8期)2018-09-29 11:06:46
我院2017年度HPV数据统计分析
能忍的人寿命长
抑癌基因P53新解读:可保护端粒
健康管理(2016年2期)2016-05-30 21:36:03
200例妇女高危型HPV感染检测结果分析
探讨抑癌基因FHIT在皮肤血管瘤中的表达意义
抑癌基因WWOX在口腔肿瘤的研究进展
再论高等植物染色体杂交