安徽铜陵冬瓜山铜(金)矿床H-O-S-Pb同位素组成及其示踪成矿物质来源**

2014-03-14 06:47刘忠法邵拥军周鑫张宇周贵斌LIUZhongFaSHAOYongJunZHOUXinZHANGYuandZHOUGuiBin
岩石学报 2014年1期
关键词:层状矽卡岩冬瓜

刘忠法 邵拥军 周鑫 张宇 周贵斌LIU ZhongFa, SHAO YongJun, ZHOU Xin, ZHANG Yu and ZHOU GuiBin

1. 中南大学有色金属成矿预测教育部重点实验室,长沙 4100832. 中南大学地球科学与信息物理学院,长沙 4100833. 山东黄金地质矿产勘查有限公司,莱州 2614004. 铜陵有色金属集团控股有限公司,铜陵 2471271. Key Laboratory of Metallogenic Prediction of Nonferrous Metals, Ministry of Education, Central South University, Changsha 410083, China2. School of Geoscience and InfoPhysics, Central South University, Changsha 410083, China3. Shandong Gold Geology and Mineral Resources Co., Ltd, Laizhou 261400, China4. Tongling Nonferrous Metals Group Co., Ltd., Tongling 244000, China2013-09-01 收稿, 2013-12-23 改回.

1 引言

图1 狮子山矿田地质简图(据徐晓春等,2008修改)1-中上三叠系灰岩、砂岩;2-花岗闪长岩;3-石英二长闪长岩;4-花岗闪长斑岩;5-辉石二长闪长岩;6-二长花岗斑岩;7-背斜轴;8-断层;9-地质界线;10-推测边界Fig.1 Geological sketch map of Shizishan orefield (modified after Xu et al., 2008)

冬瓜山是铜陵矿集区内规模最大的矿床,主矿体成层状。该矿床研究程度高,但对矿床成因认识还存在不同观点,有学者认为该矿床为受层间滑脱构造控制的层控矽卡岩型矿床(常印佛和刘学圭,1983;常印佛等,1991;翟裕生等,1992;黄许陈和储国正,1992,1993;Pan and Dong, 1999;凌其聪和刘丛强,2002,2003;毛景文等,2004,2009;Maoetal., 2006, 2011;徐晓春等,2010),亦有部分学者认为该矿床存在两期成矿,即海西期喷流沉积和燕山期热液叠加改造,矿床成因为同生沉积-热液叠加改造型矿床(刘裕庆和刘兆廉,1991;谢光华等,1995;王文斌等,1995;李文达等,1997;唐永成等,1998;徐兆文等,2000,2007; 陈邦国等,2002;Guetal., 2000, 2007;Zhouetal., 2000;陆建军等,2003,2008;曾普胜等,2004,2005;徐克勤和朱金初,2009;刘经华等,2009;郭维民等,2010,2011;侯增谦等,2011)。其争议的核心问题在于层状矿体物质成分的具体来源。基于前人研究基础,本文对冬瓜山层状矿体与其它类型矿体氢、氧、硫、铅同位素组成进行了对比研究,同时,也对比研究了冬瓜山铜(金)矿床与铜陵矿集区内典型矽卡岩型矿床的硫、铅同位素组成,系统地探讨了成矿物质来源。

2 矿床地质特征

冬瓜山铜(金)矿床位于狮子山矿田(图1)中部,西南端与老鸦岭铜矿床毗邻,南侧与东、西狮子山铜矿床接壤。大地构造位置位于扬子地台东北部,下扬子台拗繁昌-贵池凹断褶带中部,处于大通-顺安复向斜次一级构造——青山背斜的北东段。矿区处于不同构造体系的复合部位,由于多期次构造运动,使得区内古生代与新生代的地层产生了一系列褶皱和层间滑脱构造。矿区内出露地层主要为泥盆系上统五通组(D3w)砂岩、页岩,石炭系中、上统(C2+3)船山组和黄龙组灰岩、白云质灰岩,二叠系下统栖霞组(P1q)灰岩夹硅质岩,与成矿关系密切的地层主要为泥盆系上统、石炭系中、上统等地层。矿区构造主要以青山背斜、近南北向、东西向、北北东向网状断裂以及发育于泥盆系(D3w)与石炭系(C2+3)的层间滑脱构造为主,其中,青山背斜和层间滑脱构造是本区最主要的控矿构造。区内岩浆活动较强烈,与成矿有直接成因联系的岩体为青山脚石英闪长岩岩体,其黑云母Ar-Ar年龄为135.8±1.1Ma(吴才来等,1996)。该石英闪长岩具自形-半自形中粗粒粒状结构及似斑状结构,矿物成分主要为斜长石、石英、角闪石,次为钾长石、黑云母,副矿物为黄铁矿、磷灰石等。

冬瓜山铜(金)矿床主矿体位于青山背斜轴部,赋存于中、上石炭统黄龙-船山组层位中,受层位、岩性以及岩体与围岩的接触带控制,总体呈似层状(图2),岩体附近矿体厚度增大,品位也随之变富,其矿物组合主要为黄铁矿-磁黄铁矿-方解石和黄铁矿-黄铜矿-磁铁矿等。另外,斑岩型矿体、矽卡岩型矿体以及脉状矿体也较为发育。斑岩型矿体主要产于斑岩岩体内,金属矿物主要呈脉状、浸染状分布于岩体中,矿物组合主要为石英-黄铜矿-黄铁矿。矽卡岩型矿体主要分布于岩体与围岩的接触带内及其附近,远离岩体与接触带的层状矿体内也可见到,其矿物组合主要为黄铁矿-矽卡岩和黄铁矿-黄铜矿-矽卡岩。脉状矿体主要产于主矿体顶底板围岩中,金属矿物呈脉状、网脉状穿插交代围岩。

根据矿体类型和矿石矿物组合,矿石类型可分为矽卡岩型矿石、退化蚀变岩型矿石、闪长斑岩型矿石等几类。除斑岩型矿石外,矽卡岩型矿石和退化蚀变岩型矿石之间没有明显的界限,为渐变关系。矽卡岩型矿石在岩体与围岩的接触带内以及层状矿体局部地段均可见到,金属矿物以黄铜矿、磁黄铁矿及磁铁矿为主,呈团块状分布于矽卡岩中。矽卡岩主要以镁质矽卡岩为主,石榴子石、透辉石、绿帘石等矽卡岩矿物较为常见。退化蚀变岩型矿石分布广泛,为层状矿体的主要矿石类型,金属矿物主要为磁黄铁矿、磁铁矿、黄铁矿、黄铜矿等,次为镜铁矿、闪锌矿、菱铁矿、辉钼矿、方铅矿、自然金、赤铁矿等;脉石矿物主要为石英、方解石、石榴子石、透辉石、绿帘石等、次为阳起石、透闪石、硬石膏等。层状主矿体底部可见纹层状矿石,由镁质矽卡岩退化蚀变形成蛇纹石、滑石、黄铜矿、黄铁矿和磁黄铁矿组合,并经自组织作用形成纹层状和曲卷状构造(毛景文等,2009)。

图2 冬瓜山铜(金)矿床52线地质剖面图(据安徽省地矿局321地质队,1985*安徽省地矿局321地质队. 1985. 冬瓜山铜矿床详查地质报告修改)

1-五通组砂岩;2-中-上石炭统黄龙组-船山组灰岩;3-二叠系-下三叠统灰岩、硅质岩;4-石英闪长岩;5-矿化石英闪长岩;6-含铜磁黄铁矿矿体;7-含铜蛇纹石矿体;8-矽卡岩矿体;9-含铜磁铁矿矿体;10-实测或推测地质界线

Fig.2 Geological section along No.52 exploration line of the Dongguashan copper (gold) deposit

矿石结构主要为自形粒状结构、他形-半自形粒状结构、交代溶蚀结构、交代填隙结构及交代筛状结构。矿石构造主要为块状构造、脉状构造、条带状构造、浸染状构造、曲卷状构造等,次为角砾状构造、网脉状构造等。根据井下矿脉的相互穿插关系和显微镜下矿物共生组合关系可知,冬瓜山铜矿床主要成矿阶段包括斑岩阶段、矽卡岩阶段、退化蚀变成矿阶段及石英-碳酸盐阶段。斑岩阶段主要发育黄铜矿化、黄铁矿化、钾化、泥化及青盘岩化,形成斑岩型矿化岩体;矽卡岩阶段主要生成石榴子石、透辉石等镁质矽卡岩矿物;退化蚀变成矿阶段主要引起早期矽卡岩发生退化蚀变作用,经退化蚀变作用生成黄铜矿、黄铁矿、磁铁矿、磁黄铁矿、闪锌矿、辉铜矿和蛇纹石、绿帘石、滑石、石英等;石英-碳酸盐阶段成矿趋于结束,主要生成大量的方解石和少量金属矿物。金属矿物生成早晚顺序依次为磁铁矿→黄铁矿→磁黄铁矿→黄铜矿→闪锌矿→辉铜矿。

围岩蚀变强烈,主要为石榴子石、透辉石、硅灰石、绿帘石、阳起石等矽卡岩化,次为钾化、硅化、蛇纹石化、碳酸盐化、硬石膏化、绿泥石化等,金属矿物的富集与矽卡岩化、硅化、钾化有密切的联系。从岩体到围岩蚀变分带依次为岩体-钾化带-泥化带-青盘岩化带-矽卡岩化带-围岩。钾化带主要发生于岩体内部,主要由钾长石、黑云母及石英组成,钾化发育部位,往往斑岩型铜矿化强烈。

3 样品及分析测试方法

本文用于氢、氧同位素分析的样品采自-850m中段66线西沿脉及-730m中段44线西沿脉与主巷道入口处,测试矿物为退化蚀变成矿阶段的石英和石英-碳酸盐阶段的方解石;硫、铅同位素分析样品分别采自冬瓜山矿床-850m中段59线东西沿脉、64线西沿脉、66线西沿脉以及-730m中段48线西沿脉和部分钻孔,样品为层状矿体、矽卡岩型矿体、脉状矿体、产于岩体内的斑岩型矿体以及新鲜岩体和围岩。氢、氧同位素分析,采用真空热爆裂法和锌还原法提取氢;在真空条件下于500~680℃,使用BrF5法从石英中收集纯净的O2,并制成CO2。氢、氧同位素组成测试由核工业北京地质研究院分析测试研究中心MAT-253质谱仪测定。硫同位素样品用Cu2O作为氧化剂,与硫化物单矿物混合发生反应,生成SO2并冷冻收集,由MAT-251质谱仪测定,采用标准为国际标准VCDT,分析精度为±0.2‰;铅同位素样品溶解、分离后,在相对湿度36%、室温20℃的条件下,根据标准 GB/T 17672—1999 《岩石中铅锶钕同位素测定方法》,利用英国GV公司生产的ISOPROBE-T热电离质谱仪进行铅同位素比值测量,测量结果用国际标样NBS981进行校正,测量误差在2σ以内。硫同位素组成及铅同位素分析在核工业北京地质研究院分析测试研究中心完成。

4 分析测试结果

4.1 氢、氧同位素

冬瓜山铜(金)矿床氢、氧同位素分析结果(表1)显示,石英δDV-SMOW为-84.0‰~-71.5‰,δ18OV-SMOW为-20.1‰~-15.5‰;方解石δDV-SMOW为-70.7‰~-60.9‰,δ18OV-SMOW为-18.2‰~-18.1‰。利用Claytonetal. (1972)的石英与水体系同位素平衡方程:δ18O石英-δ18OH2O≈3.38×106/T2-3.40(温度(T)由流体包裹体均一法测定),获得石英与水平衡时的δ18OH2O值,计算结果表明,石英的δ18OH2O为4.51‰~8.97‰;利用O’Neiletal. (1969)的方解石与水体系平衡方程:δ18O方解石-δ18OH2O≈2.78×106/T2-3.39,获得方解石的δ18OH2O值, 计算结果表明, 方解石δ18OH2O为4.41‰~4.91‰。将计算结果投影到δD-δ18OH2O图解(图3)中,冬瓜山铜(金)矿床脉石矿物(石英、方解石)投影于岩浆水范围内及其附近,表明冬瓜山铜(金)矿床成矿流体主要来源于岩浆水。

表1冬瓜山铜(金)矿床氢、氧同位素组成分析结果

Table 1 Hydrogen, Oxygen isotopic compositions of Dongguashan copper (gold) deposit

序号矿物δDV-SMOW(‰)δ18OV-SMOW(‰)δ18OH2O(‰)均一温度(℃)数据来源1石英-71.5010.204.51336.702石英-72.3011.406.06348.503石英-83.1013.507.80336.404石英-84.0014.908.97328.705方解石-70.7012.104.91239.306方解石-60.9012.304.41223.307石英-67.7012.1211.118石英-67.9011.8210.819石英-72.9014.1013.0910石英-55.0010.389.3711石英-60.2012.0111.0012石英-59.3011.236.3313石英-66.0012.508.4014石英-59.9012.097.5915石英-71.3011.536.2316石英-62.7010.435.1317石英-65.6011.005.2918石英-60.8011.305.5919石英-65.1011.103.1720石英-73.0014.906.97本文陈邦国等,2002徐兆文等,2007

图3 冬瓜山铜(金)矿床成矿流体δD-δ18OH2O图实心三角数据来自本文;实心方框数据引自陈邦国等,2002; 实心圆形数据引自徐兆文等,2007Fig.3 δD-δ18OH2O diagram of the ore-forming fluids in Dongguashan copper deposit

表2冬瓜山铜(金)矿床硫同位素组成分析结果

Table 2 Analytical results of sulfur isotope compositions from Dongguashan copper (gold) deposit

样品号矿物样品描述δ34SV-CDT(‰)DGS20黄铁矿脉状矿石4.80DGS20-1黄铁矿脉状矿石4.60DGS02-8黄铁矿脉状矿石5.60DGS21-1黄铁矿脉状矿石5.70ZK-21黄铁矿脉状矿石5.40DGS03-6黄铁矿脉状矿石4.20ZK-15黄铁矿矽卡岩型矿石4.90DGS17黄铁矿层状矿石4.10DGS17-3黄铁矿层状矿石4.90DGS005-12黄铁矿层状矿石5.30DGS004-12黄铁矿层状矿石4.50DGS006磁黄铁矿层状矿石5.30DGS17磁黄铁矿层状矿石4.90ZK-24黄铁矿斑岩型矿石5.70DGS002-4黄铁矿斑岩型矿石5.30DGS002-5黄铁矿斑岩型矿石5.10ZK1-1全岩石英闪长岩-2.20ZK1-2全岩石英闪长岩1.20ZK1-3全岩石英闪长岩5.20DGS1-2全岩灰岩-4.60DGS5-1全岩灰岩-17.40DGS15全岩灰岩-29.50

4.2 硫同位素

前人对冬瓜山矿床的硫同位素做了大量分析与研究(唐永成等,1998;徐兆文等,2000;徐文艺等,2004;曾普胜等,2005;李红阳等,2006;徐晓春等,2010),研究成果较多,但认识不尽相同。为了查明本区成矿物质来源,本文着重对比研究了受石炭系控制的层状矿体、矽卡岩型矿体、脉状矿体、斑岩型矿体以及岩体和围岩的硫同位素特征。硫同位素组成分析结果见表2。

分析结果显示,冬瓜山矿床岩体全岩硫同位素组成为δ34S=-2.20‰~+5.02‰,平均值为+1.40‰;脉状矿石硫同位素组成为δ34S=+4.20‰~+5.70‰,平均值为+5.10‰;矽卡岩型矿石硫同位素组成为δ34S=+4.90‰;层状矿石硫同位素组成为δ34S=+4.10‰~+5.30‰,平均值为4.83‰;斑岩型矿石硫同位素组成为δ34S=+5.1‰~+5.7‰,平均值为+5.37‰;围岩全岩硫同位素组成为δ34S=-29.5‰~-4.6‰,平均值为-17.2‰。冬瓜山铜(金)矿床脉状矿石、 矽卡岩型矿石、 层状矿石及斑岩型矿石硫同位素组成与前人测试结果相符(刘裕庆等,1984;徐晓春等,2010),平均值在5.0‰上下,变化范围也基本一致(图4),说明本区不同类型的矿石可能具有相同的来源。由硫同位素组成分布图(图5)可知,冬瓜山铜(金)矿床各类型矿石硫同位素组成与岩体硫同位素组成一致,与围岩硫同位素组成明显不同。

表3冬瓜山铜(金)矿床铅同位素组成分析结果

Table 3 Analytical results of lead isotope compositions from Dongguashan copper (gold) deposit

样品号矿物样品描述208Pb/204Pb207Pb/204Pb206Pb/204PbμΔβΔγTh/UDGS20黄铁矿脉状矿石38.35115.61318.5289.4818.5927.663.64DGS20-1黄铁矿脉状矿石38.34615.61018.5339.4718.3727.203.64DGS02-8黄铁矿脉状矿石38.35815.61018.5069.4718.4528.383.66DGS21-1黄铁矿脉状矿石38.03715.54918.1329.3915.3628.333.70ZK-21黄铁矿脉状矿石38.28015.56218.3129.4015.6729.843.71DGS03-6黄铁矿脉状矿石38.28015.66420.5079.9021.5421.602.85ZK-15黄铁矿矽卡岩型矿石38.35615.60818.5049.4718.3128.283.65DGS17黄铁矿层状矿石38.09215.51618.1899.3212.8126.203.69DGS17-3黄铁矿层状矿石38.17315.57118.4779.4015.7922.203.59DGS005-12黄铁矿层状矿石38.35415.58518.2739.4517.4334.333.77DGS004-12黄铁矿层状矿石38.44815.58018.4119.4216.6232.173.74DGS006磁黄铁矿层状矿石38.05215.51318.1629.3212.6925.833.68DGS17磁黄铁矿层状矿石38.35015.61418.5189.4818.6928.003.65ZK-24黄铁矿斑岩型矿石38.35615.61218.5379.4718.5027.463.64DGS002-4黄铁矿斑岩型矿石38.24015.54518.4139.3614.1524.603.64DGS002-5黄铁矿斑岩型矿石38.11415.53118.0859.3614.2530.953.76

图4 冬瓜山矿床不同类型矿石硫同位素组成对比图Fig.4 Comparison of sulfur isotope compositions among different types of ores in Dongguashan deposit

图5 冬瓜山铜(金)矿床硫同位素组成1-本文;2-数据引自刘裕庆等,1984;3-数据引自徐晓春等,2010;4-数据引自徐兆文等,2007Fig.5 Sulfur isotope compositions from Dongguashan copper (gold) deposit

4.3 铅同位素

冬瓜山铜(金)矿床铅同位素组成分析结果见表3。冬瓜山铜(金)矿床层状矿石铅同位素比值208Pb/204Pb=38.052~38.448,207Pb/204Pb=15.513~15.614,206Pb/204Pb=18.162~18.518,计算得出的特征参数μ、Δβ、Δγ分别为9.39~9.90、15.36~21.54、21.60~29.84;矽卡岩型矿石208Pb/204Pb=38.356,207Pb/204Pb=15.608,206Pb/204Pb=18.504,特征参数μ、Δβ、Δγ分别为9.47、18.31、28.28;脉状矿石208Pb/204Pb=38.037~38.358,207Pb/204Pb=15.549~15.664,206Pb/204Pb=18.132~18.533,特征参数μ、Δβ、Δγ分别为9.32~9.48、12.69~18.69、22.20~34.33;斑岩型矿石208Pb/204Pb=38.114~38.356,207Pb/204Pb=15.531~15.612,206Pb/204Pb=18.085~18.537,特征参数μ、Δβ、Δγ分别为9.36~9.47、14.15~18.50、24.60~30.95。冬瓜山铜(金)矿床矿石铅同位素组成与铜陵地区中酸性岩体中钾长石的铅同位素组成一致(208Pb/204Pb=38.090~38.460,207Pb/204Pb=15.470~15.600,206Pb/204Pb=17.940~18.420)(唐永成等,1998),表明冬瓜山铜(金)矿床矿石与区域上的中酸性侵入体具有相同的铅同位素来源。

5 讨论

氢、氧同位素测试结果(表1)表明,本区成矿流体主要来源于岩浆水,方解石δ18O值为4.41‰~4.91‰,明显低于石英的δ18O值,与正常岩浆水δ18O值6‰~9.5‰相比也稍低,反映随着成矿过程的进行,混入的大气降水逐渐增多。

图6 铜陵矿集区典型矿床燕山期侵入岩、斑岩型矿体、矽卡岩型矿体、脉状矿体、层状矿体、石炭系-二叠系沉积岩及蒸发岩中的硫酸盐δ34S对比(据Pan and Dong,1999修改)部分数据引自刘裕庆等,1984;王道华等,1986,刘裕庆和刘兆廉,1991;翟裕生等,1992;李文达等,1997Fig.6 Comparison of δ34S values in the Yanshanian intrusions, porphyry orebodies, skarn orebodies, vein orebodies, stratabound orebodies, Cambrian-Triassic sedimentary rocks and sulfates in evaporrites in selected deposits of Tongling district (modified after Pan and Dong, 1999)

冬瓜山矿床围岩地层中的硬石膏含量约为10%,灰岩含量约为90%,前人测定的硬石膏硫同位素组成为+14.8‰~20.5‰,平均值为+16.7‰,经计算,本区地层还原硫和氧化硫之和为-13.8‰,与矿石硫同位素组成明显不同,因此,排除了地层还原硫和氧化硫之间的混合对矿石硫同位素组成造成的影响。

图7 206Pb/204Pb-207Pb/204Pb图解和206Pb/204P-208Pb/204Pb图解Fig.7 Diagrams of 206Pb/204Pb vs. 207Pb/204Pb and 206Pb/204Pb vs. 208Pb/204Pb

由于热液体系存在硫同位素的分馏现象,常常使沉淀的硫化物δ34S值不等于热液的δ34S值。Ohmoto(1972)根据矿物沉淀时的化学环境来估计成矿溶液的总硫同位素组成,认为如果出现黄铁矿-磁黄铁矿-方解石组合,黄铁矿的平均δ34S值,大致相当于热液的总硫值。因此,认为冬瓜山铜(金)矿床黄铁矿的δ34S值可以近似地代表热液总硫同位素组成。

本文测定的硫同位素组成,无论脉状矿石、矽卡岩型矿石、层状矿石还是斑岩型矿石,黄铁矿(2个磁黄铁矿)的δ34S值为4.1‰~5.7‰,平均为5.0‰,变化范围较小且基本一致(图4)。黄铁矿的δ34S值与岩体的δ34S值(-2.2‰~5.2‰)均落入典型岩浆熔体硫同位素组成(-3‰~+7.0‰)范围内(Ohmoto, 1986; Ohmoto and Goldhaber, 1997),表明本区不同类型矿体(石)中的硫与岩体中的硫具有相同来源,均为岩浆硫。

通过与铜陵矿集区内铜官山及天马山等矿床对比(图6)可以发现,冬瓜山铜(金)矿床矿体中的硫同位素组成与矿集区内典型矽卡岩型矿床矿体中的硫同位素组成基本一致,反映了区域上硫源的一致性。

将各类型矿石铅同位素组成投影到206Pb/204Pb-207Pb/204Pb和206Pb/204Pb-208Pb/204Pb图解(图7)中,可见各类型矿石铅同位素组成的投影点相对集中,并呈现一定的线性关系,暗示它们可能具有相同的来源或演化过程(梁婷等,2008)。样品DGS03-6采于断层附近,受水流体影响作用较大,在固相和水流体相共存的条件下,U比Th更倾向于流体相,因此,流体中富集U,而不富集Th。206Pb、207Pb和208Pb分别由238U、235U和232Th衰变而产生,因此,就引起了206Pb和207Pb的高异常(图7)。

图8 冬瓜山铜(金)矿床矿石铅同位素构造模式图(据Zartman and Doe, 1981)A-地幔(Mantle);B-造山带(Orogene);C-上地壳(Upper Crust);D-下地壳(Lower Crust)Fig.8 Plum botectonics model of lead isotopic of ores from Dongguashan copper (gold) deposit (after Zartman and Doe, 1981)

图9 冬瓜山铜(金)矿床矿石铅同位素△β-△γ成因分类图解(据朱炳泉,1998)1-地幔源铅;2-上地壳铅;3-上地壳与地幔混合的俯冲带铅(3a-岩浆作用;3b-沉积作用);4-化学沉积型铅;5-海底热水作用铅;6-中深变质作用铅;7-深变质下地壳铅;8-造山带铅;9-古老页岩上地壳铅;10-退变质铅Fig.9 Δγ-Δβ diagram of genetic classification of ores from Dongguashan copper (gold) deposit (after Zhu, 1998)

由矿石铅同位素组成发现,脉状、层状、斑岩型及矽卡岩型矿体的铅同位素之间并没有多少差别,矿石铅同位素组成的一致性表明,不同类型的矿体形成于同一地质事件(吴开兴等,2002),可能来源于同一成矿热液,只是在不同的部位热液聚集形成了不同类型的矿体。冬瓜山铜(金)矿床层状主矿体是成矿热液在石炭系地层之间的层间滑脱构造内聚集、沉淀而形成的。

依据表3,绘制了冬瓜山铜(金)矿床矿石铅同位素206Pb/204Pb-207Pb/204Pb构造分配模式图(图8)和矿石铅同位素的Δγ-Δβ成因分类图解(图9)。由图8可知,冬瓜山铜(金)矿床各类矿石铅投影点绝大多数落在造山带增长线下方,只有极少数投影点位于造山带增长线上方且紧靠造山带增长线。投影点位于造山带增长线下方的矿石铅来源于地幔或下地壳,位于造山带增长线附近为混合源铅(Stacey and Hedlund, 1983)。因此,可以推断冬瓜山铜(金)矿床铅主要为幔源铅,可能受到了地壳铅的混染。冬瓜山矿床矿石铅同位素特征参数Th/U、μ分别为3.59~3.77、9.32~9.48(表3)。其中,Th/U值与中国大陆中新生代长石平均铅同位素演化的模式计算结果(Th/U=3.60)非常接近(李龙等,2001);μ值与张理刚(1988)计算的长江中下游地区(下扬子省)中生代中酸性岩(花岗闪长岩、花岗岩)长石铅同位素μ值相符(9.1~9.6)。暗示本区矿石铅同位素组成与长江中下游地区中生代中酸性岩浆岩具有相同的铅同位素组成,二者具有同源性。由图9可知,本区矿石样品的投影点均落入到岩浆作用范围(3a)内,表明矿床中铅主要与岩浆作用有关。

6 结论

冬瓜山铜(金)矿床成矿流体主要来源于岩浆水,成矿后期混入了大气降水;不同类型矿体中的硫具有相同的来源,主要为岩浆硫,且与区域上典型矽卡岩型矿床矿体中的硫同位素组成一致;不同类型矿体中铅的来源主要为与岩浆作用有关的幔源铅,具有相同的演化过程,且与长江中下游地区中生代中酸性岩浆岩中的铅具有同源性,说明本区物质成分主要来源于岩浆。

Chang YF and Liu XG. 1983. On strata-bound skarn deposits. Mineral Deposits, 2(1): 11-20 (in Chinese with English abstract)

Chang YF, Liu XP and Wu YC. 1991. The Copper-iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House, 1-379 (in Chinese)

Chen BG, Jiang ZP, Zhang WP, Xu ZW, Lu XC, Lu JJ, Liu SM and Huang SS. 2002. Study on altered fluids of diplogenetic stratified copper hydrothermal solution in Dongguashan, Anhui Province. Jiangsu Geology, 26(2): 65-69 (in Chinese with English abstract)

Clayton RN, O’Neil JR and Mayeda TK. 1972. Oxygen isotope exchange between quartz and water. J. Geophys. Res., 77: 3057-3067

Gu LX, Hu WX, He JX, Ni P and Xu KQ. 2000. Regional variations in ore composition and fluid features of massive sulphide deposits in south China: Implications for genetic modeling. Episodes, 23(2): 110-118

Gu LX, Zaw K, Hu WX, Zhang KJ, Ni P, He JX, Xu YT, Lu JJ and Lin CM. 2007. Distinctive features of Late Palaeozoic massive sulphide deposits in South China. Ore Geology Reviews, 31(1-4): 107-138

Guo WM, Lu JJ, Zhang RQ and Xu ZW. 2010. Ore textures and genetic significance of pyrrhotite from Dongguashan ore deposit in Tongling area, Anhui Province. Mineral Deposits, 29(3): 405-414 (in Chinese with English abstract)

Guo WM, Lu JJ, Zhang RQ, Zhao ZJ and Xu ZW. 2011. The superimposed mineralization of the Dongguashan Cu deposit in Tongling area, Anhui Province: Evidence from the ore texture. Acta Geologica Sinica, 85(7): 1223-1232 (in Chinese with English abstract)

Hou ZQ, Yang ZS, Lü QT, Zeng PS, Xie YL, Meng YF, Tian SH, Xu WY, Li HY, Jiang ZP, Wang XC and Yao XD. 2011. The large-scale Dongguashan deposit, Shizishan district in East China: Carboniferous sedex-type massive sulfides overprinted by Late Jurassic skarn Cu mineralization. Acta Geologica Sinica, 85(5): 659-686 (in Chinese with English abstract)

Huang XC and Chu GZ. 1992. Types of ore deposits, metallogenetic series and characteristics, Tongling. Geology of Anhui, 2(4): 53-61 (in Chinese with English abstract)

Huang XC and Chu GZ. 1993. Multistory metallogenic model of the Shizishan orefield in Tongling, Anhui Province. Mineral Deposits, 12(3): 221-230 (in Chinese with English abstract)

Li HY, Yang QR, Li YJ, Hou ZQ, Yang ZS and Meng YF. 2006. Geochemical characteristics of the Dongguashan copper deposit in Anhui Province. Acta Geoscientica Sinica, 27(6): 551-556 (in Chinese with English abstract)

Li L, Zheng YF and Zhou JB. 2001. Dynamic model for Pb isotope evolution in the continental crust of China. Acta Petrologica Sinica, 17(1):61-68 (in Chinese with English abstract)

Li WD, Wang WB, Fan HY, Dong P, Zhou TF and Xie HG. 1997. The conditions to form copper (gold) ore deposit concentrated areas and the possibilities to discover super giant copper (gold) ore deposit in the Middle-Lower Yangtze area. Volcanology and Mineral Resources, 20(Suppl.): 1-131 (in Chinese)

Liang T, Wang DH, Cai MH, Chen ZY and Huang HM. 2008. Sulfur and lead isotope composition tracing for the sources of ore-forming material in Dachang tin-polymentallic orefield, Guangxi. Acta Geologica Sinica, 82(7): 967-977 (in Chinese with English abstract)

Ling QC and Liu CQ. 2002. The characteristics of ore-forming fluid of Dongguashan strata-bound skarn Cu deposit and its significance for deposit genesis. Journal of Jilin University, 32(3): 219-224 (in Chinese with English abstract)

Ling QC and LiuCQ. 2003. REE behavior during formation of strata-bound skarn and related deposit: A case study of Dongguashan skarn deposit in Anhui Province, China. Acta Petrologica Sinica, 19(1): 191-200 (in Chinese with English abstract)

Liu JH, Li H, Xu ZW, Lu XC, Liu SM and Nie GP. 2009. Metallogenic geological settings and genesis of Dongguashan stratified copper deposit. Journal of Geology, 3(2): 133-137 (in Chinese with English abstract)

Liu YQ, Liu ZL and Yang CX. 1984. Stable isotope studies of the Dongguashan copper deposit in Tongling prefecture, Anhui Province. Bull. Inst. Miner. Deposits, Chin. Acad. Geol. Sci., 70-101 (in Chinese)

Liu YQ and Liu ZL. 1991. Isotope geochemistry and genesis of the stratiform copper (iron-sulfur) deposits in Tongling area, Anhui Province. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, No.1, 47-114 (in Chinese)

Lu JJ, Hua RM, Xu ZW, Gao JF and Li J. 2003. A two-stage model for formation of the Dongguashan Cu-Au deposit. Geological Journal of China Universities, 9(4): 678-690 (in Chinese with English abstract)

Lu JJ, Guo WM, Chen WF, Jiang SY, Li J, Yan XR and Xu ZW. 2008. A metallogenic model for the Dongguashan Cu-Au deposit of Tongling, Anhui Province. Acta Petrologica Sinica, 24(8): 1857-1864 (in Chinese with English abstract)

Mao JW, Stein H, Du AD, Zhou TF, Mei YX, Li YF, Zang WS and Li JW. 2004. Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the Middle-Lower Reaches of Yangtze River belt and its implications for mineralization. Acta Geologica Sinica, 78(1): 121-131 (in Chinese with English Abstract)

Mao JW, Wang YT, Lehmann B, Yu JJ, Du AD, Mei YX, Li YF, Zang WS, Stein HJ and Zhou TF. 2006. Molybdenite Re-Os and albite40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River Valley and metallogenic implications. Ore Geology Reviews, 29(3-4): 307-324

Mao JW, Shao YJ, Xie GQ, Zhang JD and Chen YC. 2009. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Mineral Deposits, 28(2): 109-119 (in Chinese with English Abstract)

Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43: 294-314

Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol., 67: 551-578

Ohmoto H. 1986. Stable isotope geochemistry of ore deposits. Rev. Miner., 16:491-559

Ohmoto H and Goldhaber MB. 1997. Sulfur and carbon isotopes. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits, 3rdEdition. New York: Wiley, 435-486

O’Neil JR, Clayton RN and Mayada TK. 1969. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys., 51(12): 5547-5558

Pan YM and Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4):177-242

Stacey JS and Hedlund DC. 1983. Lead-isotope compositions of diverse igneous rocks and ore deposits from southwestern New Mexico and their implications for Early Proterozoic crustal evolution in the western United States. Geological Society of America Bulletin, 94: 43-57

Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-Gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House, 1-351 (in Chinese)

Wang DH, Fu DX, Wu LX, Zhou ZH, Lou QB and Gu YF. 1986. The stable isotopic features of the Middle-Carboniferous “sedimentary submarine effusive-hydrothermal” bedded Cu (±Zn, Pb) ore deposits in the Lower Yangtze area. Resources Survey & environment, 7(2): 1-25(in Chinese with English abstract)

Wang WB, Li WD, Xie GH and Zhou HP. 1995. The Pb-isotopic characteristics in Cu-Fe-multimetal deposits in Middle-Lower Yangtze area. Volcanology and Mineral Resources, 16(2): 67-77 (in Chinese with English abstract)

Wu CL, Zhou R, Huang XC, Zhang CH and Huang WM. 1996.40Ar/39Ar chronology of intrusion rocks from Tongling. Acta Petrologica et Mineralogica, 15(4): 299-306 (in Chinese with English abstract)

Wu KX, Hu RZ, Bi XW, Peng JT and Tang QL. 2002. Ore lead isotopes as a tracer for ore-forming material sources: A review. Geology-Geochemistry, 30(3): 73-81(in Chinese with English abstract)

Xie GH, Wang WB and Li WD. 1995. The genesis and metallogenetic epoch of Xinqiao Cu-S deposit, Anhui. Volcanology and Mineral Resources, 16(2): 101-107 (in Chinese with English abstract)

Xu KQ and Zhu JC. 2009. Origin of the sedimentary- (or volcanosedimentary-) iron-copper deposits in some fault depression belts in South China. In: Editorial Board of Collection of Xu KQ Papers (ed.). Collection of Xu KQ Papers. Beijing, Science Press, 426-499 (in Chinese)

Xu WY, Yang ZS, Meng YF, Zeng PS, Shi DN, Tian SH and Li HY. 2004. Genetic model and dynamic migration of ore-forming fluids in Carboniferous exhalation-sedimentary massive sulfide deposits of Tongling district, Anhui Province. Mineral Deposits, 23(3): 353-364(in Chinese with English abstract)

Xu XC, Lu SM, Xie QQ, Bo L and Chu GZ. 2008. SHRIMP zircon U-Pb dating for the magmatic rocks in Shizishan ore-field of Tongling, Anhui Province, and its geological implications. Acta Geologica Sinica, 82(4): 500-509 (in Chinese with English abstract)

Xu XC, Yin T, Lou JW, Lu SM, Xie QQ and Zhu PL. 2010. Origin of Dongguashan stratabound Cu-Au skarn deposit in Tongling: Restraints of sulfur isotope. Acta Petrologica Sinica, 26(9): 2739-2750 (in Chinese with English abstract)

Xu ZW, Lu JJ, Lu XC, Gao JF, Liu SM, Luo QC and Jiang ZP. 2000. The geological characteristics and genesis of Dongguashan copper-gold deposit in Tongling area, Anhui Province. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4): 233-234 (in Chinese)

Xu ZW, Lu XC, Gao G, Fang CQ, Wang YJ, Yang XN, Jiang SY and Chen BG. 2007. Isotope geochemistry and mineralization in the Dongguashan diplogenetic copper deposit, Tongling area. Geological Review, 53(1): 44-51 (in Chinese with English abstract)

Zartman RE and Doe BR. 1981. Plum botectonics the model. Tectonophysics, 75(1-2): 135-162

Zeng PS, Yang ZS, Meng YF, Pei RF, Wang YB, Wang XC, Xu WY, Tian SH and Yao XD. 2004. Temporal-spatial configuration and mineralization of Yanshanian magmatic fluid systems in Tongling ore concentration area, Anhui Province. Mineral Deposits, 23(3): 298-309 (in Chinese with English abstract)

Zeng PS, Pei RF, Hou ZQ, Meng YF, Yang ZS, Tian SH, Xu WY and Wang XC. 2005. The Dongguashan deposit in the Tongling mineralization cluster Area, Anhui: A large-sized superimposition type copper deposit. Acta Geologica Sinica, 79(1): 106-113 (in Chinese with English abstract)

Zhai YS, Yao SZ, Lin DX, Zhou XR, Wan TF, Jin FQ and Zhou ZG.1992. Fe-Cu (Au) metallogeny of the Middle-Lower Changjiang Region. Beijing: Geol. Pub. House, 1-235(in Chinese)

Zhang LG. 1988. Lead isotopic compositions of feldspar and ore and their geologic significance. Mineral Deposits, 7(2): 55-64(in Chinese with English abstract)

Zhou TF, Yue SC, Yuan F and Zhai Y. 2000. Two series of copper-gold deposits in the Middle and Lower Reaches of the Yangtze River area (ML YRA) and the hydrogen, oxygen, sulfur and lead isotopes of their ore-forming hydrothermal systems. Science in China (Series D), 43(Suppl.): 208-218

Zhu BQ, Li XH and Dai DM. 1998. System Theory and Application of Isotopes in the Earth Sciences: On the Chinese Mainland Crust-mantle Evolution. Beijing: Science Press, 224-226(in Chinese)

附中文参考文献

常印佛,刘学圭. 1983. 关于层控式矽卡岩型矿床——以安徽省内下扬子拗陷中一些矿床为例. 矿床地质,2(1):11-20

常印佛,刘湘培,吴言昌. 1991. 长江中下游铜铁成矿带. 北京:地质出版社,1-379

陈邦国,姜章平,张卫平,徐兆文,陆现彩,陆建军,刘苏明,黄顺生. 2002. 安徽冬瓜山叠生式层状铜矿热液改造型流体研究. 江苏地质,26(2):65-69

郭维民,陆建军,章荣清,徐兆文. 2010. 安徽铜陵冬瓜山矿床中磁黄铁矿矿石结构特征及其成因意义. 矿床地质,29(3):405-414

郭维民,陆建军,章荣清,招湛杰,徐兆文. 2011. 安徽铜陵冬瓜山铜矿床的叠加改造成矿机制:来自矿石结构的证据. 地质学报,85(7):1223-1232

侯增谦,杨竹森,吕庆田,曾普胜,谢玉玲,蒙义峰,田世洪,许文艺,李红阳,姜章平,王训诚,姚孝德. 2011. 安徽铜陵冬瓜山大型铜矿:海底喷流-沉积与矽卡岩化叠加复合成矿过程. 地质学报,85(5):659-686

黄许陈,储国正. 1992. 铜陵地区矿床类型、成矿系列与成矿特征. 安徽地质,2(4):53-61

黄许陈,储国正. 1993. 铜陵狮子山矿田多位一体(多层楼)模式. 矿床地质,12(3):221-230

李红阳,杨秋荣,李英杰,侯增谦,杨竹森,蒙义峰. 2006. 安徽冬瓜山铜矿床的地球化学特征. 地球学报,27(6):551-556

李龙,郑永飞,周建波. 2001. 中国大陆地壳铅同位素演化的动力学模型. 岩石学报,17(1):61-68

李文达,王文斌,范洪源,董平,周涛发,谢华光. 1997. 长江中下游铜(金)矿床密集区形成条件和超大型矿床存在的可能性. 火山地质与矿产,20(增):1-131

梁婷,王登红,蔡明海,陈振宇,郭春丽,黄惠民. 2008. 广西大厂锡多金属矿床S、Pb同位素组成对成矿物质来源的示踪. 地质学报,82(7):967-977

凌其聪,刘从强. 2002. 冬瓜山层控夕卡岩型铜矿床成矿流体特征及其成因意义. 吉林大学学报(地球科学版),32(3):219-224

凌其聪,刘从强. 2003. 层控矽卡岩及有关矿床形成过程的稀土元素行为——以安徽冬瓜山矿床为例. 岩石学报,19(1):192-200

刘经华,李卉,徐兆文,陆现彩,刘苏明,聂桂平. 2009. 冬瓜山层状铜矿成矿地质背景及成因. 地质学刊,3(2):133-137

刘裕庆,刘兆廉,杨成兴. 1984. 铜陵地区冬瓜山铜矿的稳定同位素研究. 中国地质科学院矿床地质研究所所刊,第1号,70-101

刘裕庆,刘兆廉. 1991. 铜陵地区层状铜(铁、硫)矿床同位素地球化学和矿床成因研究. 中国地质科学院矿床地质研究所所刊,第1号:47-114

陆建军,华仁民,徐兆文,高剑峰,李娟. 2003. 安徽铜陵冬瓜山铜、金矿床两阶段成矿模式. 高校地质学报,9(4):678-690

陆建军,郭维民,陈卫峰,蒋少涌,李娟,颜晓蓉,徐兆文. 2008. 安徽铜陵冬瓜山铜(金) 矿床成矿模式. 岩石学报,24(8):1857-1864

毛景文,Stein H,杜安道,周涛发,梅燕雄,李永峰,藏文栓,李进文. 2004. 长江中下游地区铜金(钼) 矿Re-Os 年龄测定及其对成矿作用的指示. 地质学报,78(1):121-131

毛景文,邵拥军,谢桂青,张建东,陈毓川. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质,28(2):109-119

唐永成,吴言昌,储国正,邢凤鸣,王永敏,曹奋扬,常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京:地质出版社,1-351

王道华,傅德鑫,吴履秀,周志化,楼启炳,顾云峰. 1986. 下扬子区中石炭世“沉积-海底喷出沉积”层状铜(多金属)矿床稳定同位素的特征. 资源调查与环境,7(2):1-25

王文斌,李文达,谢光华,周华平. 1995. 长江中下游铜铁多金属矿床铅同位素特征. 火山地质与矿产,16(2):67-77

吴才来,周若,黄许陈,张成火,黄文明. 1996. 铜陵地区中酸性侵入岩年代学研究. 岩石矿物学杂志,15(4):299-306

吴开兴,胡瑞忠,毕献武,彭建堂,唐群力. 2002. 矿石铅同位素示踪成矿物质来源综述. 地质地球化学,30(3):73-81

谢光华,王文斌,李文达. 1995. 安徽新桥硫铁矿床成矿时代及成矿物质来源. 火山地质与矿产,16(2):101-107

徐克勤,朱金初. 2009. 我国东南部几个断裂拗陷带中沉积(或火山沉积)-热液叠加类铁铜矿床成因探讨. 见:徐克勤文集编辑委员会. 徐克勤文集. 北京:科学出版社,426-499

徐文艺,杨竹森,蒙义峰,曾普胜,史大年,田世洪,李红阳. 2004. 安徽铜陵矿集区块状硫化物矿床成因模型与成矿流体动力学迁移. 矿床地质,23(3):353-364

徐晓春,陆三明,谢巧勤,柏林,储国正. 2008. 安徽铜陵狮子山矿田岩浆岩锆石SHRIMP定年及其成因意义. 地质学报,82(4):500-509

徐晓春,尹滔,楼金伟,陆三明,谢巧勤,褚平利. 2010. 铜陵冬瓜山层控矽卡岩型铜金矿床的成因机制:硫同位素制约. 岩石学报,26(9):2739-2750

徐兆文,陆建军,陆现彩,高剑峰,刘苏明,罗庆春,姜章平. 2000. 安徽省铜陵冬瓜山铜金矿床地质特征及成因. 矿物岩石地球化学通报,19(4):233-234

徐兆文,陆现彩,高庚,方长泉,王云健,杨小男,蒋少涌,陈邦国. 2007. 铜陵冬瓜山层状铜矿同位素地球化学及成矿机制研究. 地质论评,53(1):44-51

曾普胜,杨竹森,蒙义峰,裴荣富,王彦斌,王训诚,许文艺,田世洪,姚孝德. 2004. 安徽铜陵矿集区燕山期岩浆流体系统时空结构及成矿. 矿床地质,23(3):298-309

曾普胜,裴荣富,侯增谦,蒙义峰,杨竹森,田世洪,许文艺,王训诚. 2005. 安徽铜陵矿集区冬瓜山矿床:一个叠加改造型铜矿. 地质学报,79(1):106-113

翟裕生,姚书振,林新多,林多新,周珣若,万天丰,金福全,周宗桂. 1992. 长江中下游地区铜(金)成矿规律. 北京:地质出版社,1-235

张理刚. 1988. 长石铅和矿石铅同位素组成及其地质意义. 矿床地质,7(2):55-64

朱炳泉,李献华,戴橦谟. 1998. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化. 北京:科学出版社,224-226

猜你喜欢
层状矽卡岩冬瓜
闷热三伏天 冬瓜可以这样煲
山东德州地区矽卡岩型铁矿找矿方法研究
激电联合剖面在判断矽卡岩型矿床矿体产状中的应用
广西博白县三叉冲矽卡岩型钨钼矿地球物理特征及找矿预测
火星上的漩涡层状砂岩
为什么叫冬瓜
冬瓜谣
轧制复合制备TA1/AZ31B/TA1层状复合材料组织与性能研究
四川省九龙县某铜钼矿矽卡岩与成矿关系分析
高韧性抗层状撕裂Q345FTE-Z35钢板开发