原垭斌 袁顺达 陈长江 霍然YUAN YaBin, YUAN ShunDa*, CHEN ChangJiang and HUO Ran
1. 中国地质大学地球科学与资源学院,北京 1000832. 中国地质科学院矿产资源研究所,国土资源部成矿作用与矿产资源评价重点实验室,北京 1000373. 湖南省湘南地质勘察院,郴州 4230001. School of Earth Sciences and Mineral Resources, China University of Geosciences, Beijing 100083, China2. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China3. Southern Hunan Institute of Geology and Survey, Chenzhou 423000, China2013-08-11 收稿, 2013-11-28 改回.
黄沙坪矿床是湘南地区一个以铅锌为主的大型Cu-Pb-Zn-W-Mo-Fe多金属矿床(许以明等,2007),矿区成岩成矿作用复杂,花岗质岩石从中酸性至酸性均有发育,矿化类型齐全,不仅发育一套斑岩-矽卡岩-热液脉型Cu-Pb-Zn-Ag多金属矿床,最近在矿区深部还发现了大型矽卡岩型W-Sn-Mo多金属矿床,这种多金属复合成矿机制是亟待查明的重要科学问题,明确矿区内与成矿有关的不同花岗质岩石的岩石类型、时空分布和源区特征是研究岩浆作用与多金属成矿关系的关键。许多学者对该区矿床地质特征(童潜明等,1986)、控岩控矿构造(李石锦,1997; 祝新友等,2010)、成岩成矿时代(姚军明等,2005, 2007;马丽艳等,2007;雷泽恒等,2010)等方面进行过大量的研究,对区内花岗质岩石类型和矿化类型进行了系统划分,并进一步厘定了成岩成矿时代,为深入研究该区花岗质岩浆演化对复杂的成矿元素组合制约机制奠定了良好的基础。然而,就区内花岗质岩石的年代学格架及成因方面,尽管许多学者开展过大量年代学的研究,如通过锆石LA-ICP-MS和SHRIMP U-Pb法,分别获得了花岗斑岩(161.6±1.1Ma,姚军明等,2005;150.1±0.4Ma,艾昊,2013)和石英斑岩(152±3.0Ma,雷泽恒等,2010;155.3±0.7Ma,艾昊,2013)的年龄,与矿区辉钼矿Re-Os年龄(154.8±1.9Ma,姚军明等,2007;153.8±4.8Ma,马丽艳等,2007;157.5~159.4Ma,雷泽恒等,2010)在误差范围内较为接近。但不同学者根据不同的锆石U-Pb年龄和Hf同位素数据对区内花岗质岩石源区特征的认识大相径庭(童潜明等,1995;姚军明等,2007;全铁军等,2012;艾昊,2013)。另外,矿区出露的超浅成英安斑岩还一直缺乏高精度的同位素年龄;最近,我们在野外地质调查时还发现,矿区内石英斑岩体内发育大量的花岗质岩石包体,与围岩界限截然且发育反应边,可能指示该区深部存在早期的隐伏岩体。因而,进一步明确矿区花岗质岩石的年代学格架及其源区特征是研究矿区花岗质岩浆作用与多金属复合成矿关系的重要前提。
在现有资料和详细的野外地质调查基础上,本文利用高精度LA-(MC)-ICP-MS 锆石U-Pb测年及Hf同位素分析手段,系统开展区内不同花岗质岩石及岩石包体锆石U-Pb测年及Hf同位素组成分析,进一步精确构建区内花岗质岩石的年代学格架,深入探讨不同岩石类型的源区特征及其成因联系,为深入理解该区复杂的成岩成矿作用提供重要的科学依据。
湘南地区在构造上处在扬子板块与华夏板块的对接带上,同时位于EW向“南岭成矿带”与NE向“钦杭成矿带”的结合部位。由于其特殊的大地构造位置,且长期以来经历了多期次复杂的构造岩浆活动,在该区发育了一系列花岗岩体,并相伴产出了一系列钨锡铅锌铜钼多金属矿床,构成了一个大型多金属矿集区。黄沙坪多金属矿床位于湘南钨锡多金属矿集区的西缘,在大地构造位置上处于(耒)阳-临(武)南北向构造带的中段(图1),矿区内发育一系列近南北向的复式褶皱和逆冲断层(图2)。其中,褶皱构造主要为坪宝复式向斜的一部分,主要由宝岭-观音打座复式倒转背斜、上银山向斜和上银山背斜组成。区内断裂按其走向可分为近南北向(F1、F2、F3)、东西向(F0、F6、F9)、北东向、北西向四组。这些褶皱、断裂构造既控制了岩体的产出,同时也是重要的控矿构造(雷泽恒等,2010)。矿区出露的地层比较简单,除部分泥盆系上统外,主要为石炭系下统的一套海相-浅海相碳酸盐岩夹陆源碎屑岩沉积建造,岩性以灰岩为主,含少量的砂页岩。容矿地层为石磴子组和测水组,石磴子组岩性为灰岩,自下而上依次为层状致密灰岩、生物碎屑灰岩及泥质灰岩,测水组为一套钙质砂岩、灰岩和砂页岩(童潜明等,1986)。区内岩浆作用强烈,总体侵位较浅,产出面积较小,但分布广泛,岩石类型从酸性至中酸性均有发育,主要有石英斑岩、花岗斑岩、花斑岩和英安斑岩,其中英安斑岩与石英斑岩出露于地表,花岗斑岩、花斑岩为隐伏岩体。空间上,石英斑岩主要与Cu-Pb-Zn矿化关系密切,岩体内部局部发育斑岩型铜矿化,接触带出现矽卡岩型Cu-Pb-Zn矿化,而花岗斑岩和花斑岩外接触带则发育一套矽卡岩型W-Mo-Pb-Zn矿化。石英斑岩中含有大量岩石包体,以往认为是隐爆角砾岩,角砾成分主要为碳酸盐岩围岩,但我们的野外观察发现,岩石包体与岩体接触界线清楚,有明显的反应边,多呈椭球、浑圆状分布,并有从深部往浅部包体逐渐变大的趋势,局部肉眼可见长石斑晶已发生蚀变,因而可能为花岗质岩石包体。
图1 湘南地区地质矿产略图(据Peng et al., 2006改编)Fig.1 Sketch map of nonferrous metal deposits in southern Hunan Province (modified after Peng et al., 2006)
图2 黄沙坪矿区地质略图(据雷泽恒等,2010改编)Fig.2 Geological sketch map of the Huangshaping polymetallic deposit (modified after Lei et al., 2010)
本次系统的野外地质观察及镜下显微鉴定分析(图3)表明,此次所采集的不同岩石样品分别为石英斑岩、二长花岗斑岩和英安斑岩以及石英斑岩中的花岗质岩石包体。英安斑岩(HSP-1)采自地表,石英斑岩(HSP-7)采自矿区坑道-96中段5线石门3附近,全岩样品呈肉红色,块状构造,斑状结构,其中斑晶主要为石英,粒径0.3~1mm,含量约5%~10%,内部可见熔蚀现象,基质为隐晶质(图3a,d)。二长花岗斑岩样品(HSP-2) 分别采自矿区坑道-96中段111线和56中段石门8,分别对应前人认定的花岗斑岩和花斑岩岩体产出位置。通过对比二者手标本和显微镜下特征发现,除了花斑岩内局部发育显微文象结构之外,其他岩相学特征基本一致。全岩样品为浅灰色-浅肉红色,斑状结构、块状构造(图3b),其浅色矿物为长石、石英,暗色矿物以黑云母为主,斑晶含量约为20%~25%,粒径一般为1~3mm,主要由钾长石(8%~10%)、斜长石(7%)和石英(6%~8%)组成,基质为显微花岗结构,矿物组分有石英(20%~25%)、钾长石(10%~20%)、斜长石(15%~20%)和黑云母(3%)。副矿物主要为锆石、磁铁矿等。镜下斜长石呈自形的条状,绢云母化蚀变强烈,黑云母也发生了不同程度的绿泥石化,局部可见显微文象结构(图3e-g)。矿区已有的岩石地球化学资料(姚军明等,2005; 刘旭等,2009; 全铁军等,2012;图4)和野外接触关系显示,花斑岩与花岗斑岩可能属同一岩体,只是侵位高度和蚀变程度不同(祝新友等,2010),均为二长花岗斑岩。而在地表(N25°38′59″,E112°40′59″)出露的英安斑岩由于遭到强烈的风化作用,无法采集到新鲜的岩石样品,因而只能根据已有的资料对其认定分析。另外,本次研究还对石英斑岩中的岩石包体进行了系统采集,样品(HSP-12)采自坑道165中段竖井旁(图3c),包体外形多呈灰色椭球状,少数呈不规则状,其大小不均一,直径一般为5~20cm,其边缘清晰,有明显的接触反应边;包体镜下可见斑状结构,斑晶可能为长英质矿物,因而可能为花岗质岩石(图3h, i)。
图3 黄沙坪矿区花岗质岩石和包体的野外及显微照片(a)-石英斑岩;(b)-二长花岗斑岩;(c)-石英斑岩内包体;(d)-石英斑岩(HSP-7,正交偏光);(e)-二长花岗斑岩中,斜长石遭受蚀变(HSP-2,正交偏光);(f)-二长花岗斑岩中局部有显微文象结构出现(HSP-2,正交偏光);(g)-二长花岗斑岩(HSP-2,正交偏光);(h)-石英斑岩与包体接触界线(HSP-12,正交偏光);(i)-包体内部结构(HSP-12,正交偏光)Fig.3 Photos and photomicrographs for the granites and enclaves from the Huashaping deposit(a)-quartz porphyry; (b)-monzogranite porphyry; (c)-the enclaves hosted in the quartz porphyry; (d)-quartz porphyry (HSP-7, crossed light); (e)-altered plagioclase in monzogranite porphyry (HSP-2, crossed light); (f)-graphic texture partly appeared in the monzogranite porphyry (HSP-2, crossed light); (g)-monzogranite porphyry (HSP-2, crossed light); (h)-contact boundary of quartz porphyry and the enclaves (HSP-12, crossed light); (i)-the texture of the quartz porphyry enclaves (HSP-12, crossed light)
用于锆石测年研究的样品共有4件,分别为英安斑岩、二长花岗斑岩、石英斑岩及石英斑岩内包体。先将样品粉碎至80~100目,再先后采用常规浮选和电磁选方法进行分选,然后在双目镜下挑选出晶型和透明度较好的锆石颗粒,接着将这些有代表性的锆石颗粒固定在无色透明的环氧树脂上,对环氧树脂表面抛光使锆石完全暴露以待测试。在固化于样品靶上的锆石颗粒当中选取测试点时,分别进行了阴极发光(CL)和透、反射光照相,反复对比CL图像和显微镜下锆石照片,力求避开其内部裂隙和包裹体等干扰因素,据此选定锆石测试点位,以期获得较准确的年龄信息。
锆石U-Pb定年测试在中国地质科学院矿产资源研究所MC-ICP-MS实验室完成,锆石定年分析所用仪器为 Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。激光剥蚀所用的斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。信号较小的207Pb,206Pb,204Pb(+204Hg),202Hg用离子计数器接收,208Pb,232Th,238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接收并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据,均匀锆石颗粒207Pb/206Pb,206Pb/238U,207Pb/235U的测试精度(2σ)均为2%左右。LA-MC-ICP-MS激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1进行调试仪器,使之达到最优状态。锆石U-Pb定年以锆石GJ-1为外标,U, Th含量以锆石M127为外标进行校正。测试过程中在每测定10个样品前后重复测定两个锆石GJ-1对样品进行校正,并测量一个锆石标样Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSDataCal 4.3程序(Liuetal.,2008)。测量过程中206Pb/204Pb>1000的分析结果未进行普通铅校正,而204Pb含量异常高的分析点可能受到包体等普通Pb的影响,在计算时剔除,锆石年龄谐和图用Isoplot 3.2程序获得。详细实验测试过程参照侯可军等(2009)。
锆石Hf同位素分析在天津地质矿产研究所实验测试室激光剥蚀多接收器等离子体质谱仪(LA-MC-ICP-MS)上进行测定,激光束斑直径为50μm,激光剥蚀时间26s,测试时采用锆石GJ-1标准,实验分析流程和校正参见文献(耿建珍等,2011)。为使Hf同位素分析与锆石U-Pb年龄分析相对应,此次锆石Hf同位素的分析点与锆石U-Pb年龄分析点位于同一颗锆石晶体内。在计算176Lu的衰变常数时采用1.867×10-11a-1(吴福元等,2007;Söderlundetal., 2004)。球粒陨石的176Lu /177Hf和176Hf/177Hf的比值分别为0.0332和0.282772 (Blichert and Albarède, 1997),亏损地幔的176Lu /177Hf和176Hf/177Hf的比值分别为0.0384和0.28325(Griffinetal., 2002),(176Lu /177Hf)平均地壳为0.015。
黄沙坪矿区岩体的LA-MC-ICP-MS锆石U-Pb测年结果见表1。
图5 黄沙坪岩体代表性锆石CL图像Fig.5 CL images of representative zircons from the Huangshaping granites
图4 黄沙坪矿区部分花斑岩与花岗斑岩样品矿物成分分类定名图解(底图据Le Maitre, 1989)Fig.4 Diagram showing classification and naming of rocks for parts of porphyry samples in Huangshaping area (base map after Le Maitre, 1989)
英安斑岩锆石的阴极发光图像(HSP-1, 图5)显示,锆石呈灰色短柱或长柱状,颗粒较大,长度为100~200μm,长宽比一般在1.5~3范围内,裂隙少,晶体自形程度较好,大部分具有密集而清晰的振荡环带,锆石点Th/U比值为0.4~1.4,具有岩浆锆石的特点。此次选取20个点进行测试,除1个分析点Th、U、Pb含量异常高、谐和度很低外,其余19个数据点都分布在谐和线上及其附近,年龄比较集中,谐和度较高,这19个测点的206Pb/238U年龄值变化于156.4~162.7Ma之间,加权平均值为158.5±0.9Ma,MSWD=1.6(图6),可以代表英安斑岩的形成年龄。
图6 黄沙坪矿区岩体锆石U-Pb一致曲线图Fig.6 U-Pb concordia diagrams of zircons from Huangshaping granites
CL图像显示,石英斑岩(HSP-7)和二长花岗斑岩(HSP-2)中的锆石大部分呈短柱或长柱状,颜色较暗,晶型比较完整,透反射图像中裂纹不发育,且部分岩浆环带发育。同时,在二长花岗斑岩中,明显看到一部分振荡环带清晰密集的浅色锆石发育,自形较好。石英斑岩样品共分析了13个锆石颗粒测点,除去谐和度较低的4个点外,其余9个有效测点的206Pb/238U年龄集中分布于158.7~162.0Ma,加权平均值为160.8±1.0Ma,MSWD=1.9(图6),可以代表石英斑岩的形成年龄。二长花岗斑岩样品的16个锆石测点的年龄值谐和有效,但年龄相当分散,出现了多组年龄区间。其中年龄最新的一组6个206Pb/238U测值变化范围为152.6~157.0Ma,加权平均值为155.2±0.4Ma,MSWD=2.0(图6),与前人所测的花岗斑岩年龄(161.6±1.1Ma,姚军明等,2005;150.1±0.4Ma,艾昊,2013)接近,可代表二长花岗斑岩的形成年龄。其余锆石的年龄数据也基本拟合分布于一条谐和曲线上(图6),按时间顺序大致可分为五组,点HSP-2.15近于谐和的207Pb/206Pb年龄为2650±12Ma,属新太古代;其他锆石测点年龄均属古元古代,点HSP-2.8和HSP-2.9给出的207Pb/206Pb谐和年龄为2452Ma、2457Ma,加权平均年龄为2457±8Ma,MSWD=0.13;点HSP-2.5和HSP-2.14207Pb/206Pb谐和年龄为2374Ma、2376Ma,加权平均为2375±8Ma,MSWD=0.031;点HSP-2.13的207Pb/206Pb年龄为2202±19Ma;点HSP-2.7、HSP-2.11、HSP-2.12、HSP-2.16的207Pb/206Pb谐和年龄在1824~1853Ma之间,加权平均为1836±20Ma。以上五组锆石年龄从1842Ma变化到2650Ma,可能为原岩部分熔融过程中的残留锆石或岩浆上升及就位过程中捕获了围岩中的锆石。
包体样品(HSP-12, 图5)中锆石颗粒多呈灰色长柱或短柱状,晶形较完整,大部分振荡环带清晰,Th/U比值均在0.3以上,为岩浆成因。此次通过对13个有效数据点测试,得出两组谐和年龄,除两个分析点由于U、Th含量异常高、谐和度很低外, 7个点的206Pb/238U年龄集中分布于153.6~157.6Ma之间,加权平均年龄为155.9±1.5Ma,MSWD=3.1。其余4个点的206Pb/238U年龄范围为219.3~222.1Ma,加权平均年龄为220.4±1.2Ma,MSWD=0.55。考虑到采样或锆石分选过程中可能混入部分石英斑岩围岩,以及155.9Ma的加权平均年龄与寄主岩石石英斑岩的成岩年龄接近,可能代表石英斑岩的年龄,而所得220.4Ma的锆石206Pb/238U加权平均年龄可能代表包体的形成年龄。
黄沙坪矿区花岗岩类的Lu-Hf同位素分析结果见表2。对已完成U-Pb测年的17颗英安斑岩中锆石的微区原位Hf同位素分析得出,初始176Hf/177Hf比值较一致,分布在 0.282463~0.282588之间,平均值为0.282511,εHf(t)值为-7.6~-3.2, 平均值为-5.9, 二阶段模式年龄 (tDM2) 为1411~1691Ma。石英斑岩中的9个锆石测点的初始176Hf/177Hf组成较均一,为 0.282494~0.282585,平均值为0.282553,εHf(t)值为-6.6~-3.6,平均值为-4.6,二阶段
表2黄沙坪矿区岩体锆石Lu-Hf同位素组成
Table 2 Zircon Lu-Hf isotopic compositions for the Huangshaping granites
测点号176Hf/177Hf2sigma176Lu/177Hf176Yb/177Hf年龄(Ma)εHf(t)tDM2(Ma)HSP-1.30.2825070.0000180.00200.0754158.5-6.0981595HSP-1.40.2825880.0000160.00150.0547158.5-3.1921411HSP-1.50.2824890.0000170.00160.0596158.5-6.6921633HSP-1.60.2825370.0000160.00100.0351158.5-4.9281521HSP-1.70.2824640.0000150.00140.0512158.5-7.5791689HSP-1.90.2825350.0000140.00100.0408158.5-5.0101526HSP-1.100.2824740.0000170.00130.0472158.5-7.1891665HSP-1.110.2825070.0000170.00130.0502158.5-7.1581591HSP-1.120.2824990.0000140.00070.0234158.5-6.2621606HSP-1.130.2824630.0000160.00140.0542158.5-3.1921691HSP-1.140.2825200.0000190.00100.0347158.5-7.6011560HSP-1.150.2825420.0000160.00130.0467158.5-5.5341513HSP-1.160.2824750.0000160.00130.0503158.5-4.7971663HSP-1.170.2825460.0000110.00090.0292158.5-4.6141501HSP-1.180.2825010.0000170.00220.0978158.5-6.0301610HSP-1.190.2825040.0000180.00150.0618158.5-6.3341599HSP-1.200.2825300.0000180.00230.0920158.5-6.1491546HSP-2.10.2825310.0000150.00180.0741155.2-5.3081543HSP-2.20.2824800.0000220.00340.1605155.2-7.2581666HSP-2.30.2825280.0000160.00300.1236155.2-5.5131555HSP-2.40.2825800.0000210.00240.0921155.2-3.6421437HSP-2.60.2825240.0000130.00100.0365155.2-5.4511552HSP-2.70.2816390.0000200.00120.04041824.4-0.4962525HSP-2.100.2825360.0000180.00110.0366155.2-5.0511526HSP-2.120.2816280.0000140.00090.03541842.6-0.4402522HSP-2.130.2816180.0000320.00130.03922202.26.5492368HSP-2.140.2813520.0000290.00160.04462375.60.4672876HSP-2.150.2812710.0000170.00070.02292650.35.2352796HSP-2.160.2816050.0000140.00090.03371833.-1.5212581HSP-7.10.2825410.0000180.00380.1134160.8-5.0541530HSP-7.20.2825670.0000120.00330.1199160.8-4.0721468HSP-7.40.2825410.0000180.00300.1092160.8-4.9521524HSP-7.60.2825470.0000210.00350.1163160.8-4.7991514HSP-7.70.2825850.0000220.00490.1937160.8-3.6161439HSP-7.80.2825690.0000170.00350.1324160.8-4.0311465HSP-7.90.2825810.0000170.00360.1185160.8-3.5931437HSP-7.120.2824940.0000170.00300.1170160.8-6.6351631HSP-7.130.2825490.0000170.00320.1285160.8-4.6791506HSP-12.20.2824940.0000160.00120.0416155.9-6.5381621HSP-12.50.2825470.0000160.00250.0822155.9-4.7921510HSP-12.60.2825470.0000160.00250.0822155.9-4.7921510HSP-12.70.2825190.0000210.00170.0498155.9-5.6831567HSP-12.80.2824930.0000180.00170.0530155.9-6.6341627HSP-12.100.2825340.0000160.00110.0391220.4-3.7381492HSP-12.120.2825260.0000160.00170.0603220.4-4.1211517HSP-12.130.2824230.0000190.00180.0556220.4-7.7731748
模式年龄(tDM2)为1437~1631Ma。二长花岗斑岩中6个晚侏罗世的岩浆结晶锆石测点的初始176Hf/177Hf比值范围为0.282480~0.282580,平均值为0.282530,εHf(t)值为-7.2~-3.6,平均值为-5.4,二阶段模式年龄(tDM2)为1437~1666Ma。另外,对已测年的6颗古老锆石的Hf同位素分析得出,初始176Hf/177Hf比值偏小(0.281271~0.281639),平均值为0.281519,εHf(t)值正负均有出现。3个年龄在1833~1843Ma的锆石176Hf/177Hf比值较小,对应其年龄计算的εHf(t)值分别为-1.5、-0.5、-0.4,接近于0,两阶段Hf模式年龄为变化于2.52~2.58Ga。另外3个更老锆石(2202Ma、2375Ma、2650Ma)的176Hf/177Hf比值更小,具有正的εHf(t)值(0.5~6.5),它们的两阶段Hf模式年龄分别为2.67Ga、2.88Ga和2.80Ga。
本文获得的黄沙坪矿区石英斑岩、二长花岗斑岩和英安斑岩的锆石LA-ICP-MS U-Pb年龄结果表明,三类岩石年龄接近,位于155~160Ma之间,与前人获得的花岗斑岩(161.6±1.1Ma,姚军明等,2005;150.1±0.4Ma,艾昊,2013)和石英斑岩(152±3.0Ma,雷泽恒等,2010;155.3±0.7Ma,艾昊,2013)的年龄接近,考虑到矿区花岗岩类部分锆石颗粒U含量较高以及测年的分析误差,我们认为该区不同类型的花岗质岩石的年龄在误差范围内基本一致。并且,花岗质岩石的锆石U-Pb年龄与矿床内辉钼矿Re-Os年龄(154.8±1.9Ma,姚军明等,2007;153.8±4.8Ma,马丽艳等,2007;157.5~159.4Ma,雷泽恒等,2010)在误差范围内相一致,指示该区花岗质岩石的侵位与区内多金属成矿作用均发生于中-晚侏罗世,与区域上千里山岩体(Ar-Ar法162.6±3.3Ma,刘义茂等,1997;锆石U-Pb法152±2Ma,Lietal.,2004)、骑田岭岩体(锆石U-Pb法160±2Ma,朱金初等,2005;付建明等,2004a;黑云母Ar-Ar法157.5±0.3Ma,毛景文等,2004)、瑶岗仙岩体(锆石U-Pb法155.4~158.4Ma,李顺庭等,2011)以及相关的柿竹园钨锡钼铋多金属矿、金船塘锡铋矿、芙蓉锡矿、新田岭钨矿、香花岭锡矿、瑶岗仙钨矿、白云仙钨矿等的成岩成矿时限一致(160~150Ma,李红艳等,1996;毛景文等,2004,2007;Pengetal., 2006; 彭建堂等,2008;Yuanetal., 2007, 2008, 2011;刘晓菲等,2012;袁顺达等,2012a, b),为南岭地区中生代大规模成岩成矿作用的组成部分(毛景文等,2007, 2008;华仁民等,2010;Maoetal., 2011)。
继承/捕获锆石的年龄为我们提供了黄沙坪地区花岗质岩石的源区及不同时期岩浆活动的信息。二长花岗斑岩中测得一颗继承锆石的207Pb/206Pb年龄为2650±12Ma,是迄今该区测得的最古老的锆石年龄,结合华南地区其它中酸性侵入岩中相关继承锆石年龄的资料(袁忠信和张宗清,1992;甘晓春等,1996;付建明等,2004b;王彦斌等,2010),指示该区可能存在太古代的古老地壳。年龄为2456Ma、2375Ma、1836Ma的继承锆石与区域上已研究的骑田岭芙蓉岩体(2445Ma、1708Ma,赵葵东等,2006)、九嶷山复式花岗岩体(1579Ma、2108Ma,付建明等,2004b)、汝城高坳背黑云母二长花岗岩(1666Ma,王彦斌等,2010)以及王仙岭云英岩化电气石花岗岩(2440Ma,郑佳浩和郭春丽,2012)中的残留古老锆石反映可能源自区内古、中元古代基底。此外,石英斑岩中岩石包体220.4Ma的年龄指示矿区深部可能发育有印支期的隐伏岩体,这与区域上广泛出露印支期花岗岩体相吻合。综上,此次获得的多组锆石年龄数据暗示了矿区内经历过复杂的岩浆活动,这可能是该区Cu-Pb-Zn-W-Mo-Fe多金属复合成矿的重要条件之一。
前人通过Sr同位素(童潜明等,1995)和岩石地球化学特征(姚军明等,2005)分析认为,黄沙坪岩体来源于地壳,为以沉积岩为主的地壳物质部分熔融形成。近年来的研究发现,锆石原位Hf同位素分析是揭示地壳演化和示踪岩浆源区的重要手段(Vervoort and Patchett,1996;Schereretal.,2000;Griffinetal.,2002;Zhangetal., 2012),最近,艾昊(2013)通过Hf同位素分析指出,与铜矿化有关的石英斑岩主要来源于地壳,而与钨钼矿化有关的花岗斑岩形成过程中有幔源物质的加入,是壳幔混合的产物,这与通常认为铜主要来自地幔,而钨主要来自地壳的认识相悖(毛景文等,2008,2011)。并且,全铁军等(2012)和艾昊(2013)获得区内同一类型的岩石Hf同位素数据(表3)存在较大差别。因而,我们此次重新测定了黄沙坪矿区石英斑岩、二长花岗斑岩、英安斑岩的锆石Hf同位素组成,发现区内各花岗质岩石的初始176Hf/177Hf比值集中分布在0.2825附近,εHf(t)值在-7.6~-3.2之间,二阶段模式年龄(tDM2)峰值约为1.69~1.41Ga,表明这三类岩石可能主要来源于地壳(图7),为中元古代的古老地壳部分熔融形成。其中,石英斑岩的εHf(t)(平均值为-4.6)较花岗斑岩(平均值为-5.4)略大。但对矿区花岗岩类锆石Hf同位素数据统计(图8)显示,石英斑岩、花岗斑岩及英安斑岩的Hf同位素组成接近,并相互重叠。由于矿区不同类型的花岗质岩石具有相近的锆石U-Pb年龄及Hf同位素组成,指示其可能为同一岩浆不同演化阶段的产物。对比区域上典型的桂东南壳源花岗岩的Hf同位素组成(-11~-9, 祁昌实等,2007)发现,矿区内花岗质岩石的εHf(t)偏大,可能指示该区岩浆演化过程中有少量地幔物质的混入。
花岗质岩石中继承锆石核的存在为岩浆起源的研究提供了重要线索(Belousovaetal., 2002),黄沙坪二长花岗斑岩大量的继承锆石核的存在表明燕山期岩浆活动可能与太古代至元古代时期地壳物质的部分熔融有关。1.8Ga左右的继承锆石εHf(t)值为接近0的负值,更古老的锆石εHf(t)值出现正值(图8),暗示与新太古代、古元古代的亏损地幔物质加入有关 (图7), 这些继承锆石相应的Hf同位素地壳模式年龄分别为1.43Ga、2.58~2.52Ga、2.67Ga、2.88Ga和2.80Ga,代表了该区新生地壳的生长时间(Amelinetal.,2000)。Yuetal.(2010)认为南岭地区的新生地壳生长主要发生在约3.6Ga、3.3Ga、2.6~2.5Ga、1.6Ga、1.0Ga和0.8~0.7Ga, Xuetal.(2005) 获得的华夏地块地壳生长期主要为三期:2.7~2.5Ga、1.8Ga、1.5~1.3Ga。本文利用锆石Hf同位素分析获得的中晚侏罗世花岗岩类二阶段模式年龄主体峰值约为1.69~1.41Ga,结合本次研究获得的新太古代地壳生长期的证据,显示研究区的地壳增生事件主要发生在2.9~2.8Ga、2.7~2.5Ga、1.7~1.4Ga三个时间段。
表3黄沙坪矿区不同花岗质岩石的Hf同位素资料总结
Table 3 Summary of the former Hf isotopic data for the Huangshaping granites
岩性176Hf/177HfεHf(t)tDM2(Ma)资料来源花斑岩0.282700~0.282774-19.7~-15.842220~2459全铁军等,2012花岗斑岩花斑岩石英斑岩0.282503~0.2825920.282526~0.2825880.282539~0.282432-7.3~-3.7-5.8~-3.5-11.3~-8.71240~12711263~13871556~1679艾昊,2013
图7 黄沙坪矿区花岗质岩石中锆石的Hf同位素特征Fig.7 Hf isotopic features of zircons from the Huangshaping granitic rocks
图8 黄沙坪矿区岩体的Hf同位素组成直方图Fig.8 Histograms of εHf(t) values of zircons from Huangshaping pluton
(1)黄沙坪矿区石英斑岩、二长花岗斑岩和英安斑岩的锆石的LA-MC-ICP-MS U-Pb年龄分别为160.8±1.0Ma、155.2±0.4Ma和158.5±0.9Ma,在误差范围内基本一致,花岗质岩石的侵位与矿区多金属成矿作用时限一致,均形成于中-晚侏罗世,与整个湘南地区大规模成岩成矿时限(160~150Ma)一致。
(2)石英斑岩内岩石包体的锆石U-Pb年龄为220.4±1.2Ma,指示矿区深部可能发育有印支期的隐伏岩体。
(3)矿区花岗岩类存在中生代、古元古代、新太古代的多组岩浆锆石及继承锆石;锆石Hf同位素组成特征显示,矿区三种类型花岗岩可能为同源岩浆演化的产物,主要源于中元古代古老地壳物质的部分熔融,演化过程中可能有部分地幔物质的加入;矿区及区域上花岗质岩石中发现元古代、新太古代的继承锆石可能指示南岭地区曾经存在较为古老的陆壳;花岗岩中继承锆石的εHf(t)特征可能记录了该区经历过多期次的地壳增生作用;锆石两阶段Hf模式年龄表明,研究区的地壳增生事件主要发生在2.9~2.8Ga、2.7~2.5Ga、1.7~1.4Ga。区内长期以来经历的复杂岩浆作用及地壳增生历史可能是黄沙坪Cu-Pb-Zn-W-Mo-Fe多金属复合型矿床形成的重要条件。
致谢湘南地质勘察院张怡军高级工程师、中国地质科学院王晓霞研究员和侯可军博士分别在野外样品采集、岩石岩相学特征鉴定和锆石同位素分析过程中提供了指导和帮助;资料收集和成文过程中得到了中国地质科学院吴胜华博士和中国地质大学(北京)刘晓菲、郑伟、杨阳、赵辛敏、薛志强、吕星球、弥佳茹、轩一撒的帮助;审稿专家提出了许多建设性的意见;在此一并表示感谢。
Ai H. 2013. Zircon U-Pb geochronology and Hf isotopic compositions of ore-related granites from Huangshaping polymetallic deposit of Hunan Province. Mineral Deposits, 32(3): 545-563 (in Chinese with English abstract)
Amelin Y, Lee DC and Halliday AN. 2000. Early-Middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225
Belousova EA, Griffin WL, O’Reilly SY and Fisher NI. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy Petrology, 143(5): 602-622
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Sciences Letters, 148(1-2): 243-258
Fu JM, Ma CQ, Xie CF, Zhang YM and Peng SB. 2004a. Zircon SHRIIMP dating of the Cailing granite on the eastern margin of the Qitianling granite, Hunan, South China, and its significance. Geology in China, 31(1): 96-100 (in Chinese with English abstract)
Fu JM, Ma CQ, Xie CF, Zhang YM and Peng SB. 2004b. SHRIMP U-Pb Zircon dating of the Jiuyishan composite granite in Hunan and its geological significance. Geotectonica et Metallogenia, 28(4): 370-378 (in Chinese with English abstract)
Gan XC, Zhao FQ, Jin WS and Sun DZ. 1996. The U-Pb ages of Early Proterozoic-Archean zircons captured by igneous rocks in southern China. Geochimica, 25(2): 112-120 (in Chinese with English abstract)
Geng JZ, Li HK, Zhang J, Zhou HY and Li HM. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract)
Griffin WL, Wang X, Jackson SE, Pearson SE, O’Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma genesis, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Hua RM, Li GL, Zhang WL, Hu DQ, Chen PR, Chen WF and Wang XD. 2010. A tentative discussion on differences between large-scale tungsten and tin mineralizations in South China. Mineral Deposits, 29(1): 9-23 (in Chinese with English abstract)
Le Maitre RW. 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendation of the International Union of Geological Sciences on the Systematics of Igneous Rocks. Blackwell Scientific Publications, 1-193
Lei ZH, Chen FW, Chen ZH, Xu YM, Gong SQ, Li HQ, Mei YP, Qu WJ and Wang DH. 2010. Petrogenetic and metallogenic age determination of the Huangshaping lead-zinc polymetallic deposit and its geological significance. Acta Geoscientica Sinica, 31(4): 532-540 (in Chinese with English abstract)
Li HY, Mao JW, Sun YL, Zou XQ, He HL and Du AD. 1996. Re-Os isotopic chronology of molybdenites in the Shizhuyuan polymetallic tungsten deposit, southern Hunan. Geological Review, 42(3): 261-267 (in Chinese with English abstract)
Li SJ. 1997. A simple explanation to ore-controlling structure characters and ore-forming process analysis of Huangshaping Pb-Zn deposit in Hunan Province. Geotectonica et Metallogenia, 21(4): 339-346 (in Chinese with English abstract)
Li ST, Wang JB, Zhu XY, Wang YL, Han Y and Guo NN. 2011. Chronological characteristics of the Yaogangxian composite pluton in Hunan Province. Geology and Exploration, 47(2): 143-150 (in Chinese with English abstract)
Li XH, Liu DY, Sun M, Li WX, Liang XR and Liu Y. 2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geological Magazine, 141(2): 225-231
Liu CS and Mou WX. 1987. Petrochemistry and Multivariable Statistical Analysis. Beijing: Geological Publishing House (in Chinese)
Liu X, Liu WH, Xi CZ, Dai TG and Wang MY. 2009. Geochemical characteristics of magmatic rocks of Huangshaping lead-zinc deposit in Hunan, China. Contributions to Geology and Mineral Resources Research, 24(3): 198-204 (in Chinese with English abstract)
Liu XF, Yuan SD and Wu SH. 2012. Re-Os dating of the molybdenite from the Jinchuantang tin-bismuth deposit in Hunan Province and its geological significance. Acta Petrologica Sinica, 28(1): 39-51 (in Chinese with English abstract)
Liu YM, Dai TM, Lu HZ, Xu YZ, Wang CL and Kang WQ. 1997.40Ar-39Ar and Sm-Nd isotope dating of rock-forming, ore-forming of the Qianlishan granites. Science in China (Series D), 27(5): 425-430 (in Chinese)
Liu YS, Hu ZC, Gao S, Gunther D, Xu J, Gao C and Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MC MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
Ma LY, Lu YF, Qu WJ and Fu JM. 2007. Re-Os isotopic chronology of molybdenites in Huangshaping lead-zinc deposit, southeast Hunan, and its geological implications. Mineral Deposits, 26(4): 425-431 (in Chinese with English abstract)
Mao JW, Li XF, Lehmann B, Chen W, Lan XM and Wei SL. 2004.40Ar-39Ar dating of tin ores and related granite in Furong tin orefield, Hunan Province, and its geodynamic significance. Mineral Deposits, 23(2): 164-175 (in Chinese with English abstract)
Mao JW, Xie GQ, Guo CL and Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract)
Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB and Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract)
Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011. A tectono-genetic model for porphy-sharn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, eastern China. Ore Geology Reviews, 43(1): 294-314
Mao JW, Chen MH, Yuan SD and Guo CL. 2011. Geological characteristics of the Qinhang Metallogenic Belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636-657 (in Chinese with English abstract)
Peng JT, Zhou MF, Hu RZ, Shen NP, Yuan SD, Bi XW, Du AD and Qu WJ. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nan-ling district, South China. Mineralium Deposita, 41(7): 661-669
Peng JT, Hu RZ, Yuan SD, Bi XW and Shen NP. 2008. The time ranges of granitoid emplacement and related nonferrous metallic mineralization in southern Hunan. Geological Review, 54(5): 617-625 (in Chinese with English abstract)
Qi CS, Deng XG, Li WX, Li XH. Yang YH and Xie LW. 2007. Origin of Darongshan-Shiwandashan S-type granitoid belt from southeastern Guangxi: Geochemical and Sr-Nd-Hf isotopic constraints. Acta Petrologica Sinica, 23(2): 403-412 (in Chinese with English abstract)
Quan TJ, Kong H, Wang G, Fei LD, Guo BY and Zhao ZQ. 2012. Petrogenesis of the granites in the Huangshaping area: Constraints from petrochemistry, zircon U-Pb chronology and Hf isotope. Geotectonica et Metallogenia, 36(4): 597-606 (in Chinese with English abstract)
Scherer EE, Cameron KL and Blichert-Toft J. 2000. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413-3432
Söderlund U, Patchett PJ, Vervoort JDetal. 2004. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusion. Earth and Planetary Sciences Letters, 219(3-4): 311-324
Tong QM, Jiang SZ, Li RQ, Gong MY, Wang SM and Huang RM. 1986. A study of geological characteristics and ore forming process of the Huangshaping lead-zinc ore deposit, Hunan. Hunan Geology, (Suppl.): 1-42 (in Chinese with English abstract)
Tong QM, Wu RH and Peng QL. 1995. Metallogeny of W, Sn, Pb-Zn, Au and Ag Deposits in the Chenxian-Guiyang Region, South Hunan, China. Beijing: Geological Publishing House, 1-98 (in Chinese)
Vervoort JD and Patchett PJ. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta, 60(19): 3717-3733
Wang YB, Wang DH, Han J, Lei ZH, Chen ZH, Qu WJ, Xu YM, Zi BZ and Wang QL. 2010. U-Pb dating and Hf isotopic characteristics of zircons and Re-Os dating of molybdenite from Gao’aobei tungsten-molybdenum deposit, southern Hunan Province. Geological Review, 56(6): 820-830 (in Chinese with English abstract)
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Xu XS, O’Reilly SY, Griffin WL, Deng P and Pearson NJ. 2005. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting. Tectonics, 24(2), doi: 10.1029/2004TC001652
Xu YM, Gong ST, Jiang YC, Lei ZH and Li YS. 2007. Hunan Huangshaping lead-zinc mine of the deep analysis of the prospects for lead-zinc mine resources. Geology and Exploration, 43(1): 38-43 (in Chinese with English abstract)
Yao JM, Hua RM and Lin JF. 2005. Zircon LA-ICP-MS U-Pb dating and geochemical characteristics of Huangshaping granite in Southeast Hunan Province, China. Acta Petrologica Sinica, 21(3): 688-696 (in Chinese with English abstract)
Yao JM, Hua RM, Qu WJ, Qi HW, Lin JF and Du AD. 2007. Re-Os isotope dating of molybdenites in the Huangshaping Pb-Zn-W-Mo polymetallic deposit, Hunan Province, South China and its geological significance. Science in China (Series D), 50(4): 519-526
Yu JH, O’Reilly SY, Wang LJ, Griffin WL, Zhou MF, Zhang M and Shu LS. 2010. Components and episodic growth of Precambrain crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research, 181(1-4): 97-114
Yuan SD, Peng JT, Shen NP, Hu RZ and Dai TM. 2007.40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in southern Hunnan, China and its geological implications. Acta Geologica Sinica, 81(2): 278-286
Yuan SD, Peng JT, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualingtin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. Insitu LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiteritein the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242
Yuan SD, Zhang DL, Shuang Y, Du AD and Qu WJ. 2012a. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrologica Sinica, 28(1): 27-38 (in Chinese with English abstract)
Yuan SD, Liu XF, Wang XD, Wu SH, Yuan YB, Li XK and Wang TZ. 2012b. Geological characteristics and40Ar-39Ar geochronology of the Hongqiling tin deposit in southern Hunan Province. Acta Petrologica Sinica, 28(12): 3787-3797 (in Chinese with English abstract)
Yuan ZX and Zhang ZQ. 1992. Sm-Nd isotopic characteristics of granitoids in the Nanling region and their petrogenetic analysis. Geological Review, 38(1): 1-15 (in Chinese with English abstract)
Zhang DY, Zhang ZC, Encarnación J, Xue CJ, Duan SG, Zhao ZD and Liu JL. 2012. Petrogenesis of the Kekesai composite porphyry intrusion, western Tianshan, NW China: Implications for metallogenesis, tectonic evolution and continental growth during Late Paleozoic time. Lithos, 146-147: 65-79
Zhao KD, Jiang SY, Jiang YH and Liu DY. 2006. SHRIMP U-Pb dating of the Furong unit of Qitianling granite from Southeast Hunan Province and their geological implications. Acta Petrologica Sinica, 22(10): 2611-2616 (in Chinese with English abstract)
Zheng JH and Guo CL. 2012. Geochronology, geochemistry and zircon Hf isotopes of the Wangxianling granitic intrusion in South Hunan Province and its geological significance. Acta Petrologica Sinica, 28(1): 75-90 (in Chinese with English abstract)
Zhong ZC. 1996. Magma rocks and their ore-controlling characteristics in the Huangshaping mining area. Mineral Resources and Geology, 10(6): 400-405 (in Chinese with English abstract)
Zhu JC, Zhang H, Xie CF, Zhang PH and Yang C. 2005. Zircon SHRIMP U-Pb geochronology, petrology and geochemistry of the Zhujianshui granite, Qitianling pluton, southern Hunan Province. Geological Journal of China Universities, 11(3): 335-342 (in Chinese with English abstract)
Zhu XY, Wang JB, Zhang Z, Wang YL and Jiang YC. 2010. Identification of the NNW trending ore-controlling structure in the Huangshaping lead-zinc deposit, Hunan Province and its significance to exploration. Geology and Exploration, 46(4): 609-615 (in Chinese with English abstract)
附中文参考文献
艾昊. 2013. 湖南黄沙坪多金属矿床成矿斑岩锆石U-Pb年代学及Hf同位素制约. 矿床地质, 32(3): 545-563
付建明, 马昌前, 谢才富, 张业明, 彭松柏. 2004a. 湖南骑田岭岩体东缘菜岭岩体的锆石SHRIMP定年及其意义. 中国地质, 31(1): 96-100
付建明, 马昌前, 谢才富, 张业明, 彭松柏. 2004b. 湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义. 大地构造与成矿学, 28(4): 370-378
甘晓春, 赵风清, 金文山, 孙大中. 1996. 华南火成岩中捕获锆石的早元古代-太古宙U-Pb年龄信息. 地球化学, 25(2): 112-120
耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508-1513
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492
华仁民, 李光来, 张文兰, 胡东泉, 陈培荣, 陈卫锋, 王旭东. 2010. 华南钨和锡大规模成矿作用的差异及其原因初探. 矿床地质, 29(1): 9-23
雷泽恒, 陈富文, 陈郑辉, 许以明, 龚述清, 李华芹, 梅玉萍, 屈文俊, 王登红. 2010. 黄沙坪铅锌多金属矿成岩成矿年龄测定及地质意义. 地球学报, 31(4): 532-540
李红艳, 毛景文, 孙亚莉, 邹晓秋, 何红蓼, 杜安道. 1996. 柿竹园钨多金属矿床的Re-Os同位素等时线年龄 研究. 地质论评, 42(3): 261-267
李石锦. 1997. 湖南黄沙坪铅锌矿多金属矿床构造控矿特征及成矿浅析. 大地构造与成矿学, 21(4): 339-346
李顺庭, 王京彬, 祝新友, 王艳丽, 韩英, 郭宁宁. 2011. 湖南瑶岗仙复式岩体的年代学特征. 地质与勘探, 47(2): 143-150
刘昌实, 牟惟熹. 1987. 岩石化学与多元统计. 北京: 地质出版社
刘旭, 刘悟辉, 息朝庄, 戴塔根, 王明艳. 2009. 湖南黄沙坪铅锌多金属矿区岩浆岩地球化学特征. 地质找矿论丛, 24(3): 198-204
刘晓菲, 袁顺达, 吴胜华. 2012. 湖南金船塘锡铋矿床辉钼矿Re-Os同位素测年及其地质意义. 岩石学报, 28(1): 39-51
刘义茂, 戴橦谟, 卢焕章, 胥有志, 王昌烈, 康卫清. 1997. 千里山花岗岩成岩成矿的40Ar-39Ar 和Sm-Nd同位素年龄. 中国科学(D辑), 27(5): 425-430
马丽艳, 路远发, 屈文俊, 付建明. 2007. 湖南黄沙坪铅锌多金属矿床的Re-Os同位素等时线年龄及地质意义. 矿床地质, 26(4): 425-431
毛景文, 李晓峰, Lehmann B, 陈文, 蓝晓明, 魏绍六. 2004. 湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义. 矿床地质, 23(2): 164-175
毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338
毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526
毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-657
彭建堂, 胡瑞忠, 袁顺达, 毕献武, 沈能平. 2008. 湘南中生代花岗质岩石成岩成矿的时限. 地质论评, 54(5): 617-625
祁昌实, 邓希光, 李武显, 李献华, 杨岳衡, 谢烈文. 2007. 桂东南大容山-十万大山S型花岗岩带的成岩: 地球化学及Sr-Nd-Hf同位素制约. 岩石学报, 23(2): 403-412
全铁军, 孔华, 王高, 费利东, 郭碧莹, 赵志强. 2012. 黄沙坪矿区花岗岩岩石地球化学、U-Pb 年代学及 Hf 同位素制约. 大地构造与成矿学, 36(4): 597-606
童潜明, 姜胜章, 李荣清. 1986. 湖南黄沙坪铅锌矿床地质特征及成矿规律研究. 湖南地质, (增刊2): 1-42
童潜明, 伍仁和, 彭奇来. 1995. 郴桂地区钨锡铅锌金银矿床成矿规律. 北京: 地质出版社, 1-98
王彦斌, 王登红, 韩娟, 雷泽恒, 陈郑辉, 屈文俊, 许以明, 资柏忠, 王清利. 2010. 汝城高坳背钨-钼矿区花岗岩锆石U-Pb年龄、Hf同位素及矿石辉钼矿Re-Os年龄. 地质论评, 56(6): 820-830
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220
许以明, 龚述清, 江元成, 雷泽恒, 李玉生. 2007. 湖南黄沙坪铅锌矿深边部找矿前景分析. 地质与勘探, 43(1): 38-43
姚军明, 华仁民, 林锦富. 2005. 湘东南黄沙坪花岗岩LA-ICPMS锆石U-Pb定年及岩石地球化学特征. 岩石学报, 21(3): 688-696
姚军明, 华仁民, 屈文俊, 戚华文, 林锦富, 杜安道. 2007. 湘南黄沙坪铅锌钨钼多金属矿床辉钼矿的 Re-Os同位素定年及其意义. 中国科学(D辑), 37(4): 471-477
袁顺达, 张东亮, 双燕, 杜安道, 屈文俊. 2012a. 湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义. 岩石学报, 28(1): 27-38
袁顺达, 刘晓菲, 王旭东, 吴胜华, 原垭斌, 李雪凯, 王铁柱. 2012b. 湘南红旗岭锡多金属矿床地质特征及Ar-Ar同位素年代学研究. 岩石学报, 28(12): 3787-3797
袁忠信, 张宗清. 1992. 南岭花岗岩类岩石Sm、Nd同位素特征及岩石成因探讨. 地质论评, 38(1): 1-15
赵葵东, 蒋少涌, 姜耀辉, 刘敦一. 2006. 湘南骑田岭岩体芙蓉超单元的锆石SHRIMP U-Pb 年龄及其地质意义. 岩石学报, 22(10): 2611-2616
郑佳浩, 郭春丽. 2012. 湘南王仙岭花岗岩体的锆石U-Pb年代学、地球化学、锆石Hf同位素特征及其地质意义. 岩石学报, 28(1): 75-90
钟正春. 1996. 黄沙坪矿区岩浆岩及其控矿特征. 矿产与地质, 10(6): 400-405
朱金初, 张辉, 谢才富, 张佩华, 杨策. 2005. 湘南骑田岭竹枧水花岗岩的锆石SHRIMP U-Pb年代学和岩石学. 高校地质学报, 11(3): 335-342
祝新友, 王京彬, 张志, 王艳丽, 江元成. 2010. 湖南黄沙坪铅锌矿NNW向构造的识别及其找矿意义. 地质与勘探, 46(4): 609-615