大别山千鹅冲钼矿区花岗岩的SHRIMP锆石U-Pb年龄、Hf同位素组成及微量元素特征**

2014-03-14 06:47高阳叶会寿李永峰罗正传李法岭熊必康孟芳GAOYangYEHuiShouLIYongFengLUOZhengZhuanLIFaLingXIONGBiKangandMENGFang
岩石学报 2014年1期
关键词:花岗钼矿斑岩

高阳 叶会寿 李永峰 罗正传 李法岭 熊必康 孟芳GAO Yang, YE HuiShou*, LI YongFeng, LUO ZhengZhuan, LI FaLing, XIONG BiKang and MENG Fang

1. 中国地质科学院矿产资源研究所,国土资源部成矿作用与资源评价重点实验室,北京 1000372. 河南省有色金属地质矿产局,郑州 4500163. 河南省地矿局第三地质调查队,信阳 4640004. 中国地质大学,北京 1000831. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China2. Henan Provincial Non-ferrous Metals Geological and Mineral Resources Bureau, Zhengzhou 450016, China3. No. 3 Geological Survey, Henan Bureau of Geology and Mineral Resources, Xinyang 464000, China4. China University of Geosciences, Beijing 100083, China2013-09-02 收稿, 2013-12-07 改回.

1 引言

千鹅冲钼矿床位于秦岭-大别造山带东部的大别山地区,是东秦岭-大别钼矿带近年来发现的一处超大型钼矿床,已探明钼资源量60万吨,平均品位0.08%(李法岭,2011;Maoetal., 2011a)。2006年开始,河南省第三地质调查队在千鹅冲地区实现了找矿突破,发现了矿区南部南湾组片岩中的千鹅冲隐伏岩体及其上部的隐伏矿体,最终确定其为超大型规模,并且是大别山地区发现的第一个超大型钼矿床。千鹅冲钼矿床的发现不仅结束了大别山地区无超大型矿床的历史,同时对区域上找矿勘探也具有十分重要的指导意义。

自千鹅冲钼矿发现以后,多位学者就其成矿成岩时代、成矿流体特征等进行了研究。研究结果表明,千鹅冲钼矿辉钼矿Re-Os同位素年龄为128±8Ma(李法岭,2011;杨梅珍等,2010),成矿作用发生在早白垩世;成矿流体为高温、高盐度、贫子晶、富CO2的流体系统(Yangetal., 2013)。钻探工程揭露矿体下部存在隐伏岩体,并且与矿体具有紧密的空间关系,所以对千鹅冲隐伏岩体进行年代学研究对于揭示成岩成矿关系及成矿机制都具有重要意义。本次研究对矿体下部隐伏的二长花岗岩和花岗斑岩进行了SHRIMP锆石U-Pb同位素定年,从而精确厘定了千鹅冲隐伏岩体的形成时代,并通过锆石原位Hf同位素及锆石微量元素分析,浅析千鹅冲隐伏岩体的成因、构造背景及与成矿的关系,同时为深入研究大别山地区白垩纪钼成矿作用与区域大规模花岗质岩浆作用的关系提供了重要依据。

2 区域地质背景

大别造山带是秦岭-大别-苏鲁造山带的组成部分,形成于三叠纪华北与华南两板块的碰撞拼合(图1)(张国伟等,2001;Hackeretal., 1998;Lietal., 2001;Ratschbacheretal., 2003)。大别造山带西起河南桐柏山,向西以南阳盆地为界与秦岭造山带相望,东侧为郯城-庐江断裂,此断裂使大别造山带和苏鲁造山带之间位移约500km。大别造山带南北边界分别为襄樊-广济断裂和栾川-明港-固始断裂。

大别造山带以商城-麻城断裂为界可分为东大别和西大别两部分。东大别从北到南分别以晓天-磨子潭断裂(XMF)、五河-水吼断裂(WSF)和太湖-马庙断裂(TMF)为边界可划分出4个岩石-构造单元(Lietal., 2001;向必伟,2009):(1)北淮阳构造带,主要包括一套在华南板块向华北板块俯冲时刮削下来所形成的低级变质地体(Zhengetal., 2005),变质岩原岩具有700~800Ma的锆石U-Pb年龄(Hackeretal., 2000;Chenetal., 2003);(2)北大别杂岩带,主要由大规模白垩纪花岗岩及少量镁铁-超镁铁质侵入岩、新元古代TTG片麻岩和角闪岩、三叠纪榴辉岩、少量变质沉积岩和麻粒岩以及少量橄榄岩组成(Hackeretal., 2000;Bryantetal., 2004;Liuetal., 2005;Xuetal., 2000;Zhengetal., 2003);(3)南大别高压-超高压变质带,以产出含柯石英和金刚石榴辉岩为特征(Wangetal.,1989),主要包括榴辉岩、含石榴石橄榄岩、硬玉石英岩、大理岩、石榴石-二云母片岩及片麻岩(Hackeretal., 1998, 2000;Xuetal., 2003);(4)宿松杂岩带,主要包含中-新元古代变质沉积岩和变质火山岩以及震旦纪大理岩(Youetal., 1996)。西大别具有与东大别相似的岩石-构造单元组成,不同的是西大别缺少与“北大别杂岩带”相对应的构造单元。

大别山地区发育大量中生代岩浆岩,其显著特点是全部形成于早白垩世,主要包括大量中酸性侵入岩及少量镁铁-超镁铁质岩和火山岩(Fanetal., 2004;Heetal., 2011, 2013;Huangetal., 2008;Wangetal., 2007;Zhaoetal., 2005)。早白垩世花岗岩类侵位时间为117~143Ma(Heetal., 2011;Wangetal., 2007),可分为两期,早期岩体(130~143Ma)通常具有高的Sr/Y和La/Yb比值,而晚期岩体则通常不具备这一特征(Wangetal., 2007;Xuetal., 2007)。火山岩主要分布在北淮阳构造带内,主要包括玄武质粗安岩、粗安岩及粗面岩等(Fanetal., 2004)。镁铁-超镁铁质侵入岩主要发育在北大别杂岩带内,时代为123~130Ma,主要包括辉石岩、角闪石岩、辉长岩等(Daietal., 2011;Huangetal., 2007;Wangetal., 2005;Zhaoetal., 2005)。

目前在大别山地区发现的斑岩型钼矿床主要分布在中西部的北淮阳构造带及临近地区(图1)。斑岩钼矿与早白垩世中酸性小斑岩体具有紧密的时空关系,其产出明显受网格状断裂构造的控制。

图1 桐柏-大别山地区地质图(据Ratschbacher et al., 2003修改)白垩纪花岗岩及镁铁-超镁铁质岩引自Ratschbacher et al., 2003;He et al., 2011;Zhao et al., 2005. ZXF, GMF, XMF, TSF, DSHF, SMF, WSF, TMF and TLF分别代表朱阳关-夏馆断裂、龟山-梅山断裂、晓天-磨子潭断裂、桐柏-商城断裂、陡山河断裂、商城-麻城断裂、五河-水吼断裂、太湖-马庙断裂及郯城-庐江断裂Fig.1 Generalized geological map of the Tongbai-Dabie area in East China (modified after Ratschbacher et al., 2003)Cretaceous granites and mafic-ultramafic intrusive rocks are from Ratschbacher et al., 2003; He et al., 2011; Zhao et al., 2005. ZXF, GMF, XMF, TSF, DSHF, SMF, WSF, TMF and TLF represent the Zhuyangguan-Xiaguan Fault, the Guishan-Meishan Fault, the Xiaotian-Mozitan Fault, the Tongbai-Shangcheng Fault, the Doushanhe Fault, the Shangcheng-Macheng Fault, the Wuhe-Shuihou Fault, the Taihu-Mamiao Fault and Tancheng-Lujiang Fault, respectively

3 矿床地质特征

千鹅冲钼矿床位于西大别北淮阳构造带内,区域性桐柏-商城断裂带北侧(图1)。矿区出露地层比较简单,绝大部分为泥盆系南湾组(Dn)浅变质云母石英片岩系,另外在矿区西南部边界分布少量震旦系-下奥陶统肖家庙岩组(Z-O1x3)地层以及沟谷中出露的第四系(图2)。区内地层走向北西西,与区域构造线一致。肖家庙岩组与南湾组以桐-商韧性剪切带为界,呈构造接触,构造带以南为肖家庙岩组地层,以北为南湾组地层。

矿区内无大的褶皱构造,构造主要为断裂构造。断裂构造分为韧性断裂和脆性断裂。韧性断裂为区域性桐(柏)-商(城)韧性剪切带的一部分,出露于矿区南部,为肖家庙岩组与南湾组地层的分界(图2),韧性剪切带内的构造岩以云英质构造片岩为主,次为长英质变晶糜棱岩。脆性断裂是矿区内的主要构造形态,主要发育在矿区中部南湾组地层中,主要为北西西向和近南北向两组。地表沿断裂分布一系列构造蚀变岩带,带内岩石发生较强硅化、钾长石化、碳酸盐化及褐铁矿化,部分地段发现钼、铜、铅锌、银矿化。

千鹅冲矿区地表无大岩体出露,经钻探验证,在矿区中南部存在隐伏岩体(图2b),钻孔揭露其顶部标高为-512.71~-751.29m,岩体呈起伏状与围岩侵入接触,局部有震碎现象。钻孔控制隐伏岩体平面投影面积约0.262km2。该岩体为矿区钼矿的成矿母岩,其与围岩接触带可见强弱不等的蚀变,类型主要有硅化、钾长石化、绢云母化和黄铁矿化,并伴生钼矿化,但矿化强度弱于上部围岩。岩体主要由花岗斑岩和二长花岗岩组成,钻孔中揭露的花岗斑岩含量远多于二长花岗岩,二长花岗岩只在局部可见。除此之外,区内燕山晚期中酸性小型脉岩较发育,按岩石类型可分为闪长玢岩脉、煌斑岩脉、石英斑岩脉和花岗斑岩脉。

除少量矿体产于隐伏岩体内接触带,绝大部分矿体产于南湾组片岩中。赋矿岩石主要为绿帘黑云石英片岩、绿帘黑云片岩、含绿帘二云石英片岩、黑云斜长石英片岩、黑云石英片岩等,矿体与围岩均呈渐变过渡关系,无明显界限。金属矿物主要为辉钼矿、黄铁矿、黄铜矿、方铅矿、闪锌矿、磁铁矿、赤铁矿等;脉石矿物主要为石英、钾长石、绿帘石、方解石、黑云母、绢云母、白云母、绿泥石、萤石。主要的矿石结构包括自形-半自形-他形结晶结构、交代结构、压碎结构、固溶体出溶结构等。矿石构造类型主要有脉状构造、浸染状构造、角砾状构造等。矿区内常见的围岩蚀变有硅化、钾长石化、黄铁矿化、绢云母化、绿帘石化、绿泥石化、碳酸盐化等,多叠加出现,强弱不等。以硅化、钾长石化、黄铁矿化、绢云母化发育较强。

图2 千鹅冲钼矿地质简图及勘探线剖面图(据河南省地矿局第三地质调查队,2011*河南省地矿局第三地质调查队. 2011. 河南省光山县千鹅冲钼矿勘探报告)

Fig.2 Simplified geological map and cross-section of the Qian’echong Mo deposit

图3 千鹅冲岩体手标本及显微照片(a)-二长花岗岩与花岗斑岩的侵入接触关系;(b)-二长花岗岩;(c)-花岗斑岩. Q-石英;Kf-钾长石;Pl-斜长石;Bi-黑云母;Chl-绿泥石Fig.3 Hand specimens and photomicrographs showing petrology of Qian’echong stock(a)-intrusive contact relationship of monzogranite and granite porphyry; (b)-monzogranite; (c)-granite porphyry. Q-quartz; Kf-K-feldspar; Pl-plagioclase; Bi-biotite; Chl-chloritic

4 样品描述及分析方法

本次研究所采集的二长花岗岩(QEC-7)和花岗斑岩(QEC-8)来自ZK005钻孔985m处,可见花岗斑岩在与二长花岗岩的接触部位有冷凝边(图3a),其形成晚于二长花岗岩。其中,二长花岗岩为灰白色,细粒结构,块状构造(图3b)。主要矿物为石英(20%~25%)、正长石(35%~40%)、斜长石(30%~35%);次要矿物为黑云母,含量2%~4%;副矿物主要有锆石、磷灰石、榍石、磁铁矿、钛铁矿等,含量1%~3%。大部分岩石发生较强的硅化。花岗斑岩,肉红色-暗红色,斑状结构,块状构造(图3c)。斑晶含量15%~20%,主要为正长石(40%~50%)、石英(35%~40%)、斜长石(15%~20%)及少量黑云母;基质含量约为80%,矿物组成同斑晶,粒度0.1~0.4mm;副矿物主要有磁铁矿、钛铁矿、锆石、磷灰石等,含量为1%~5%。岩石普遍发生较强烈的钾硅酸盐化及硅化蚀变。

图4 千鹅冲钼矿二长花岗岩和花岗斑岩代表性锆石阴极发光图像及测点位置、U-Pb年龄和εHf(t)值Fig.4 Cathodoluminescence (CL) images of representative zircon of monzogranite and granite porphyry from the Qian’echong Mo deposit with analytical numbers, U-Pb ages and εHf(t)

将岩石样品破碎,经重力和磁选后在双目镜下挑选出锆石颗粒,并与标准锆石一起置于环氧树脂做成样品靶,进行锆石透、反射光、阴极发光照相,以及SHRIMP定年、Lu-Hf同位素分析和锆石微量元素测试。

锆石分选工作在廊坊市地源矿物测试分选技术服务有限公司完成。锆石阴极发光(CL)照相在中国地质科学院地质研究所北京离子探针中心完成。锆石U-Pb年龄数据是在中国地质科学院地质研究所北京离子探针中心的网络虚拟实验室,通过SHRIMP远程共享控制系统(SHRIMP Remote Operation System, SROS)远程控制位于澳大利亚Curtin理工大学(Curtin University of Technology)的SHRIMP II仪器获得的,详细测试方法见Williams(1998)。SHRIMP远程共享控制系统(SROS)由北京离子探针中心、中国计量科学研究院和吉林大学共同研发,可以实现通过Internet公共网络,远程控制SHRIMP II仪器、远程选取样品待测点和实时远程实验数据输出打印等功能。数据处理采用SQUID和ISOPLOT程序(Ludwig, 2003)。

锆石Lu-Hf同位素测试是在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室Neptune多接收等离子质谱和Newwave UP213紫外激光剥蚀系统(LA-MC-ICP-MS)上进行的,实验过程中采用He作为剥蚀物质载气,剥蚀直径为55μm,测试时采用锆石国际标样GJ1作为参考物质,分析点与U-Pb定年分析点为同一位置。相关仪器运行条件及详细分析流程见侯可军等(2007)。分析过程中锆石标准GJ1的176Hf/177Hf测试加权平均值为0.282015±28(2σ,n=10),与文献报道值(侯可军等,2007;Elhlouetal., 2006)在误差范围内完全一致。

锆石原位微量元素测试在国家地质实验测试中心(NRCGA)完成,采用激光剥蚀等离子质谱(LA-ICP-MS)方法。使用仪器为Thermo Element II 等离子质谱仪,激光剥蚀系统为New Wave UP-213。实验中采用He 作为剥蚀物质的载气,激光波长213nm、束斑40μm、脉冲频率10Hz、能量0.176mJ、密度23~25J/cm2,测试过程中首先遮挡激光束进行空白背景采集15s,然后进行样品连续剥蚀采集45s,停止剥蚀后继续吹扫15s 清洗进样系统,单点测试分析时间75s。等离子质谱测试参数为冷却气流速(Ar)15.55L/min;辅助气流速(Ar)0.67L/min;载气流速(He)0.58L/min;样品气流速0.819L/min,射频发生器功率1205W。数据测试标样使用NIST-610。用于计算Ce4+和Ce3+在锆石-熔体中的分配系数所用到的全岩微量元素含量测试在国家地质实验测试中心完成,检测仪器为等离子体质谱仪ICP-MS(X-series),测试精度优于5%。

5 分析结果

5.1 SHRIMP锆石U-Pb年龄

二长花岗岩(QEC-7)和花岗斑岩(QEC-8)中的锆石多呈柱状,长度一般为100~200μm,长宽比大多为2:1~3:1,无色透明,具清晰震荡环带,裂纹不发育,显示岩浆成因特征(Rubatto and Gebauer, 2000)(图4)。本次研究中,对样品QEC-7和QEC-8分别选择了14个和16个点进行测试,锆石U-Pb定年结果列于表1。两件样品中绝大部分锆石Th/U比值变化在0.56~1.99之间,属典型岩浆锆石特征(Belousovaeta., 2002)。QEC-7的14个测试点和QEC-8的15个测试点分别得到206Pb/238U年龄为130±2Ma(MSWD=1.4)和129±2Ma(MSWD=1.9)(图5),分别代表二长花岗岩和花岗斑岩的结晶年龄。另外,样品QEC-8中的一个测点3.1得到了1943±37Ma的年龄,没有参与加权平均年龄的计算。以上测年结果显示千鹅冲隐伏岩体中的二长花岗岩和花岗斑岩形成于同一岩浆事件。

表1千鹅冲钼矿床二长花岗岩(QEC-7)和花岗斑岩(QEC-8)的SHRIMP锆石U-Pb同位素定年结果

Table 1 Results of SHRIMP zircon U-Pb dating of monzogranite (QEC-7) and granite porphyry (QEC-8) from the Qian’echong Mo deposit

SpotNo.U(×10-6)Th(×10-6)Th/U206Pb*(×10-6)206Pbc(%)207Pb*235U±%(1σ)207Pb*206Pb*±%(1σ)206Pb*238U±%(1σ)206Pb238UAge(Ma)±Ma(1σ)QEC-7-1.116829440.5829.50.150.13522.90.04812.20.02041.9130.22.4QEC-7-2.1124816461.3622.71.130.14207.60.04917.30.02101.9133.62.5QEC-7-3.1127510780.8723.0—0.14672.40.05061.50.02101.9134.12.5QEC-7-4.12423471.484.21.720.11028.80.04068.50.01972.1125.82.6QEC-7-5.13654941.406.11.230.1150170.0431170.01932.2123.12.7QEC-7-6.12421730.744.2—0.16374.30.05873.80.02022.1129.12.7QEC-7-7.1150120471.4126.80.260.14153.30.04962.70.02071.9132.02.5QEC-7-8.184914101.7215.30.360.13314.30.04623.90.02091.9133.32.5QEC-7-9.1154816051.0727.30.310.14383.00.05092.30.02051.9130.72.4QEC-7-10.1101518511.8917.7—0.15704.30.05563.90.02051.9130.62.5QEC-7-11.11763391.993.11.720.1100190.0391190.02042.3130.13.0QEC-7-12.15004010.838.60.500.12777.40.04647.10.02002.0127.42.5QEC-7-13.11772451.433.10.990.1210150.0438150.02002.3127.82.9QEC-7-14.1151011180.7726.70.380.13563.90.04793.50.02051.9131.02.4QEC-8-1.174841.161.38.04————0.01934.0123.24.9QEC-8-2.14083320.847.1—0.172100.06149.80.02042.1130.02.7QEC-8-3.158330.5817.4—6.47007.70.13347.40.35172.2194337QEC-8-4.146700.008.50.820.14256.90.04906.60.02112.0134.52.6QEC-8-5.127800.005.01.350.1110130.0388120.02072.1132.12.7QEC-8-6.179800.0013.2—0.13443.30.05042.50.01932.2123.42.7QEC-8-7.146500.007.80.400.17293.30.06482.70.01942.0123.52.4QEC-8-8.16437491.2011.10.480.12813.80.04673.30.01991.9127.12.4QEC-8-9.19188901.0016.00.310.13495.60.04845.30.02021.9129.02.4QEC-8-10.1118415411.3420.7—0.13893.00.04942.40.02041.9130.12.4QEC-8-11.14512460.567.60.900.1240110.0461100.01952.0124.72.5QEC-8-12.1126510850.8921.90.260.13372.80.04822.10.02011.9128.52.4QEC-8-13.1166815390.9529.50.470.12794.30.04543.90.02051.9130.52.4QEC-8-14.14502930.677.8—0.15113.70.05453.10.02012.0128.32.5QEC-8-15.19399551.0516.9—0.14152.60.04901.80.02091.9133.62.5QEC-8-16.1219015140.7140.73.450.13317.20.04636.90.02091.9133.12.5

注:Pb*和Pbc分别代表放射铅和普通铅,锆石中的普通铅用实测204Pb校正; —表示未检出

图5 SHRIMP锆石U-Pb年龄谐和图及加权平均年龄Fig.5 Zircon U-Pb isotope concordian diagrams and weighted average ages

表2千鹅冲钼矿床二长花岗岩(QEC-7)和花岗斑岩(QEC-8)锆石Hf同位素分析结果

Table 2 Zircon Hf isotopic composition of monzogranite (QEC-7) and granite porphyry (QEC-8) from the Qian’echong Mo deposit

SpotNo.176Yb/177Hf176Lu/177Hf176Hf/177Hf±2σ(176Hf/177Hf)iAge(Ma)εHf(t)tDM1(Ma)tDM2(Ma)QEC-7-1.10.0811110.0013290.2821490.0000200.282146130-19.315682408QEC-7-2.10.1339350.0024110.2822950.0000220.282289134-14.214032086QEC-7-3.10.1650890.0039830.2823200.0000230.282310134-13.414282037QEC-7-4.10.0844470.0017510.2822340.0000270.282229126-16.414652224QEC-7-5.10.1246460.0018570.2822780.0000210.282273123-14.914062127QEC-7-6.10.1003610.0019910.2822740.0000260.282270129-14.914172132QEC-7-7.10.1256450.0016860.2823460.0000300.282342132-12.313031969QEC-7-8.10.1561120.0020790.2826180.0000330.282612133-2.79251362QEC-7-9.10.0870800.0013110.2821590.0000280.282155131-18.915532385QEC-7-10.10.0745100.0012960.2820010.0000240.281997131-24.517742736QEC-7-11.10.0871600.0012340.2825000.0000280.282497130-6.910711624QEC-7-12.10.1355800.0031620.2821250.0000290.282118127-20.416832470QEC-7-13.10.0963390.0013780.2823760.0000310.282373128-11.312501902QEC-7-14.10.1195740.0029890.2822250.0000200.282218131-16.715282245QEC-8-1.10.1184460.0016410.2823300.0000250.282326123-13.113242010QEC-8-2.10.0818730.0012790.2821590.0000220.282156130-18.915512385QEC-8-3.10.0133800.0001960.2809940.0000190.2809871,943-19.830723787QEC-8-4.10.0663240.0011100.2822670.0000190.282264135-15.013942142QEC-8-5.10.0392970.0006000.2823350.0000250.282334132-12.612811988QEC-8-6.10.1079880.0021290.2823230.0000220.282318123-13.313512027QEC-8-7.10.0798330.0011540.2822810.0000210.282279124-14.713752116QEC-8-8.10.0699900.0010970.2823790.0000180.282376127-11.212361895QEC-8-9.10.0714910.0011840.2822350.0000210.282233129-16.214412215QEC-8-10.10.1084380.0019960.2823690.0000190.282364130-11.612811921QEC-8-11.10.1021630.0015780.2823730.0000240.282370125-11.512601912QEC-8-12.10.0750580.0013390.2823140.0000190.282311129-13.513362041QEC-8-13.10.0810800.0015310.2822200.0000180.282216131-16.814762250QEC-8-14.10.0844270.0012380.2823700.0000240.282367128-11.512531915QEC-8-15.10.1351150.0030770.2822740.0000250.282266134-14.914602136QEC-8-16.10.1051810.0017560.2822080.0000260.282204133-17.215022276

注:εHf(t)=10000×{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR,0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tDM1=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};tDM2=1/λ×ln{1+[(176Hf/177Hf)S, t-(176Hf/177Hf)DM, t]/[(176Lu/177Hf)c-(176Lu/177Hf)DM]}+t; (176Lu/177Hf)S和(176Hf/177Hf)S为样品测定值; (176Hf/177Hf)CHUR,0=0.282772, (176Lu/177Hf)CHUR=0.0332, (176Hf/177Hf)DM=0.28325, (176Lu/177Hf)DM=0.0384 (Blichert-Toft and Albarède, 1997; Griffinetal., 2000); λ=1.867×10-11/a (Soderlundetal., 2004); (176Lu/177Hf)c=0.015;t为锆石结晶时间

5.2 锆石Hf同位素

在SHRIMP锆石U-Pb定年的基础上,对样品QEC-7和QEC-8进行了锆石微区Hf同位素测定,分析结果见表2和图6。大部分锆石的176Lu/177Hf比值小于0.002,说明锆石在形成后具有很少的放射成因Hf的积累,所测定的176Hf/177Hf比值基本代表了其形成时体系的Hf同位素组成。样品QEC-7共分析14个点,176Hf/177Hf比值变化于0.282001~0.282618,εHf(t)值变化于-24.5~-2.7(绝大部分集中在-24.5~-11.3之间),两阶段模式年龄(tDM2)变化于1362~2736Ma。样品QEC-8共分析16个点,176Hf/177Hf比值变化于0.280994~0.282379,εHf(t)值较均一,变化于-19.8~-11.2,除一颗继承锆石的两阶段模式年龄(tDM2)为3787Ma外,其他变化于1895~2385Ma之间(图6)。

表3千鹅冲钼矿二长花岗岩和花岗斑岩锆石微量元素LA-ICP-MS测试结果(×10-6)

Table 3 Zircon trace element data of monzogranite and granite porphyry in the Qian’echong Mo deposit (×10-6)

测点号LaCePrNdSmEuGdTbDyHoErTmYbLuThUHfQEC-7(二长花岗岩)10.0226.00.050.752.561.0910.83.4551.920.810620.228658.583.43421743120.411220.898.5112.84.4257.815.619496.144271.076016996118882168432.8382.31.709.3611.33.0340.813.018876.235862.571215167317381941640.2094.40.363.296.481.9434.810.314768.136367.7738168106616231924452.731333.6524.123.46.6774.921.724190.742285.7853190126920861851560.0993.80.292.373.381.4723.38.0710148.228750.25191187788581682270.0532.30.090.591.631.068.612.8535.216.777.613.513731.61171941937780.961320.736.5913.23.7045.712.914761.624938.937870.611439551472893.841672.1811.411.74.5351.917.221587.943782.78641871657241517589101.001180.839.1614.05.6557.618.419672.530855.758010372774111072111.1347.90.846.528.292.2133.89.8512954.024041.641289.5385133617901122.641562.0819.227.210.612231.634412755690.879614399889112897130.291511.1413.325.35.4094.926.229311449578.97521521350129514638142.034612.2318.229.210.412330.231313357581.7640117233295714226154.471261.5510.317.66.7851.214.218377.728746.5534121953132119386160.2381.01.0712.425.510.086.921.024795.438257.258612034439616506176.031952.319.0411.45.2354.914.415368.528538.233759.269137916054全岩60.494.49.0329.03.870.692.630.301.510.220.660.100.490.0822.94.354.69QEC-8(花岗斑岩)10.1874.20.9514.127.47.6472.021.925790.931952.153398.73872461222320.1469.80.222.074.951.8821.15.8078.537.118829.934078.33213801792330.0421.00.131.342.900.6311.52.9434.314.965.99.5686.717.235.680.718603410236531.310729.87.3051.813.714652.225646.949880.97809321311450.1120.70.638.0911.33.6742.310.210744.617729.925545.61141101268866.561331.478.8812.53.7052.915.520589.739660.65761255956271531473.7791.24.2817.79.542.6930.28.0598.342.422535.835977.845165215181845.319323.976.724.83.1154.112.514661.127241.639378.739782617922912537335.712632.46.1460.014.116372.431949.242690.6411446150051041.61429.7541.822.24.3255.216.120673.729149.950292.130532010863114.5184.21.6810.611.33.0745.813.416367.330956.251992.3427452129261229.51237.2129.615.02.0746.715.318666.128453.256592.0962126011256135.661104.2818.118.05.9251.313.514869.832452.854914173693822108140.1437.30.324.097.030.5830.29.2812448.622036.638075.530259214122150.5545.10.332.863.881.6019.66.0083.848.725545.4528145680147419242166.3278.52.1011.78.412.6928.48.4010944.021138.442898.6642103914575171.9574.31.3412.116.44.2172.420.622081.136161.457610047648913029180.5958.30.403.264.991.8626.68.3010444.422338.735566.033337014067193.6768.92.0210.910.33.1740.511.313758.627745.244493.272980914297205.1239.52.8216.517.80.6979.319.219272.833957.447177.633856215152全岩41.667.76.5321.03.080.562.300.341.760.290.850.140.920.1726.97.464.77

图6 二长花岗岩和花岗斑岩锆石εHf(t)统计直方图(a)和二阶段模式年龄(tDM2)统计直方图(b)Fig.6 Histogram of εHf(t) (a) and two stage mode ages (tDM2) (b) of zircons from monzogranite and granite porphyry

表4千鹅冲钼矿二长花岗岩和花岗斑岩锆石Ce3+和Ce4+的分配系数及比值

Table 4 Partition coefficients and ratios of Ce3+and Ce4+of zircons from monzogranite and granite porphyry in the Qian’echong Mo deposit

测点号DCe3+DCe4+Ce4+/Ce3+Ce/Ce*Eu/Eu*QEC-7(二长花岗岩)10.00070341.5393.7234.60.6320.00600803.5215.349.70.5030.00529720.2164.09.20.4340.00157847.4636.185.50.3950.01730896.380.610.30.4960.00062758.91606145.20.5170.00053384.2639.3115.10.8780.01533870.390.638.70.4690.00462999.4382.514.10.56100.01202739.6103.131.80.61110.00481584.7104.512.10.40120.03290823.749.416.40.57130.02630938.360.063.90.34140.046001103.9105.753.20.53150.01552808.585.311.80.69160.03346551.624.740.20.65170.01412708.2145.812.80.64QEC-8(花岗斑岩)10.15925541.95.943.70.5320.00648508.1158.498.20.5630.01032226.729.175.70.3340.21304652.224.51.60.5750.05883344.04.219.70.5160.02666617.872.910.50.4470.02364576.756.15.60.4980.15398521.417.61.40.2690.22445543.423.81.40.43100.11094483.717.91.70.38110.02921548.741.77.50.41120.05154745.434.42.10.24130.04518673.234.95.50.59140.01412490.238.042.90.12150.00213675.9311.325.90.56160.01469658.578.05.30.53170.05755584.118.111.30.37180.00824497.5103.629.50.49190.02369662.042.06.20.47200.08648499.75.72.50.06

注:锆石和熔体之间Ce4+和Ce3+的分配系数DCe3+、DCe4+及Ce4+/Ce3+比值计算方法据Ballardetal. (2002);Eu/Eu*=EuN/(SmN×GdN)1/2;Ce/Ce*=CeN/(LaN×PrN)1/2

图7 锆石稀土元素球粒陨石标准化配分曲线(球粒陨石标准化值据Sun and McDonough, 1989)Fig.7 Chondrite-normalized REE patterns of zircons (chondritite values after Sun and McDonough, 1989)

5.3 锆石微量元素特征

锆石中稀土元素及Th、U、Hf元素含量见表3。测试结果显示,二长花岗岩中锆石的稀土总量为358.9×10-6~2536×10-6,平均为1604×10-6;花岗斑岩中锆石的稀土总量为268.8×10-6~1893×10-6,平均为1279×10-6。锆石稀土元素球粒陨石标准化配分曲线(图7)显示,二长花岗岩和花岗斑岩具有较一致的稀土元素特征,亏损LREE且富集HREE。

锆石Ce4+和Ce3+在锆石-熔体间的分配系数DCe4+、DCe3+及Ce4+/Ce3+比值见表4。计算结果显示,二长花岗岩和花岗斑岩都具有变化较大的Ce4+/Ce3+比值,但二长花岗岩总体上具有相对花岗斑岩更大的Ce4+/Ce3+比值。二长花岗岩和花岗斑岩中的锆石均显示正Ce异常和Eu负异常(图7),但样品QEC-8中部分锆石具有更强负Eu异常(图7b),锆石Ce/Ce*分别变化于9.2~234.6和1.4~98.2之间,Eu/Eu*变化范围分别为0.34~0.87(平均0.55)和0.06~0.59(平均0.42)。

6 讨论

6.1 成岩成矿时代

本次研究得到千鹅冲钼矿中隐伏的二长花岗岩和花岗斑岩SHRIMP锆石U-Pb年龄分别为130±2Ma和129±2Ma,二者在误差范围内一致。这一结果与李法岭(2011)和杨梅珍等(2010)报道的千鹅冲钼矿床的辉钼矿Re-Os同位素年龄(128±7Ma)及成矿后花岗斑岩脉的年龄(129±3Ma)也具有比较好的一致性,说明千鹅冲斑岩型钼矿床的成岩成矿作用发生在早白垩世。

鉴于前人(李法岭,2011;杨梅珍等,2010)报道的千鹅冲钼矿辉钼矿Re-Os等时线年龄误差较大(±7Ma),最近,作者运用辉钼矿Re-Os同位素定年重新厘定了千鹅冲钼矿的成矿时代,6件辉钼矿样品得到了一条理想的等时线,其Re-Os等时线年龄为129±2Ma(MSWD=0.63)(数据待发表)。这一结果与本文获得的千鹅冲矿区二长花岗岩和花岗斑岩的SHRIMP锆石U-Pb年龄非常一致,说明千鹅冲钼矿成岩成矿时限较短,约为128~130Ma。

近年来,东秦岭-大别钼矿带钼矿床年代学研究表明,虽然有少量钼矿床形成于中生代以前(如寨凹和龙门店,李厚民等,2009;魏庆国等,2009),但总体上以中生代成矿作用大爆发为显著特征(李永峰等,2005;毛景文等,2005;叶会寿等,2006)。Maoetal.(2008,2011a)比较全面地统计了东秦岭-大别钼矿带钼矿床成矿时代,将中生代钼矿床作用划分为三个期次:晚三叠(221~233Ma)、晚侏罗-早白垩(138~148Ma)、早-中白垩(112~131Ma)。与东秦岭多期次钼成矿作用不同,除个别侏罗纪年龄外,绝大多数大别山地区钼矿床的成矿作用发生于早白垩世(黄凡等,2011;李毅等,2013,及其中引文),此时代跨度与大别山碰撞后岩浆作用时限基本一致(Heetal., 2011;Wangetal., 2007)。

6.2 岩浆源区及相对氧逸度

6.2.1 岩浆源区

锆石Lu-Hf同位素体系具有较高的封闭温度(Schereretal., 2000),能有效地揭示岩浆演化过程和源区性质(Griffinetal., 2000;Beloisovaetal., 2006)。由于Hf属于不相容元素,当寄主岩浆不断发生部分熔融和结晶分异作用时,亏损地幔源区具有更高的176Hf/177Hf比值,使得熔融物和寄主岩浆发生176Hf/177Hf比值的解耦,即大陆地壳相对于亏损地幔具有更低的176Hf/177Hf比值和εHf(t)值(Patchettetal., 1981)。

表2和图8显示,千鹅冲钼矿中二长花岗岩和花岗斑岩中的锆石具有低的εHf(t)值和古老的Hf模式年龄,并且所有Hf同位素数据点均落于球粒陨石Hf同位素演化线之下(图8),表明千鹅冲岩体主要来源于古老的地壳物质。大别造山带的深部地壳和岩石圈地幔是否存在华北物质存在争议(Huangetal., 2007;Li and Yang, 2003;Wangetal., 2005),但基于对大别造山带超高压变质岩及早白垩世高Sr/Y花岗岩的地球化学性质的详细研究,多数学者认为大别造山带的地壳物质基本来自华南板块(Heetal., 2013;Zhengetal., 2003;Zheng and Zhang, 2007;Zhaoetal., 2007;Zhao and Zheng, 2009)。所以千鹅冲花岗岩应来源于华南板块北缘的古老地壳。

图8 锆石εHf(t)-Age图解资料来源:北大别片麻岩引自Zhao et al. (2008);太古代崆岭片麻岩和混合岩以及古元古代崆岭花岗岩引自Zhang et al. (2006),Zheng et al. (2006),Xiong et al. (2008);亏损地幔演化线据Nowell et al. (1998)Fig.8 εHf(t) vs. Age plots for zirconsData sources: The granitic gneiss from North Dabie from Zhao et al. (2008); Archean gneiss and migmatite and Paleoproterozic granite from the Kongling Complex from Zhang et al. (2006a); Zheng et al. (2006b); Xiong et al. (2008). The evolutionary line of depleted mantle after Nowell et al. (1998)

千鹅冲花岗岩的锆石Hf同位素特征与大别造山带碰撞后花岗岩的锆石Hf同位素特征具有相似性(Zhaoetal., 2011),暗示它们具有一致的来源。对大别造山带内碰撞后花岗岩类的研究表明,它们与造山带地表出露的原岩为新元古代的双峰式火成岩的高压-超高压变质岩(Liu and Xue, 2007;Zhengetal., 2003)有相似的地球化学特征(Bryantetal., 2004;Heetal., 2011, 2013;Wangetal., 2007;Zhangetal., 2002;Zhaoetal., 2011),说明这些花岗岩来自大别造山带高压-超高压变质岩的部分熔融(Heetal., 2013;Wangetal., 2007;Zhaoetal., 2011)。虽然对于大别造山带后碰撞花岗岩具体来自镁铁质榴辉岩还是中酸性大别片麻岩存在较大分歧(Heetal., 2011, 2013;Wangetal., 2007;Zhaoetal., 2011;Xuetal., 2013),但是古元古-太古代的继承锆石、古元古-太古代的Nd和Hf的模式年龄都指示这些花岗岩的原岩混入了不同比例的更古老的地壳物质(如太古代崆岭杂岩)(Heetal., 2013;Zhaoetal., 2011)。千鹅冲花岗斑岩中发现了年龄为1943Ma的古元古代继承锆石,其与崆岭杂岩内的古元古代花岗岩具有相似的Hf同位素特征(图8),也说明了其原岩混入了类似崆岭杂岩的古老地壳物质。虽然两个样品中大部分锆石的εHf(t)值为较低的负值,但是变化范围较大的εHf(t)值和二阶段模式年龄暗示其源区可能混入了不同比例的年轻地幔组分,尤其是二长花岗岩(图6)。大别山地区白垩纪超基性岩浆作用开始于~130Ma(Jahnetal., 1999;Wangetal., 2005),说明此时地幔上涌不仅为花岗岩原岩部分熔融提供了热源,也注入了少量幔源组分。

6.2.2 相对氧逸度

实验表明,Mo在流体中的溶解度与流体的氧逸度关系密切(Balietal., 2012)。岩浆中的Ce常呈3价和4价,在氧化条件下,锆石中的Zr4+容易被Ce4+离子取代。另外,Ce3+和Ce4+的分异能力很强,对岩浆的氧化还原状态具有较高的敏感度,因此可以通过Ce4+/Ce3+比值来判断岩浆氧逸度的相对高低(Ballardetal., 2002;Bolharetal., 2008;Burnham and Berry, 2012;Trailetal., 2012)。Eu在岩浆中呈Eu2+和Eu3+两种价态,当Ce4+稳定存在时,Eu应呈三价。实验表明,Eu的异常一般与Ce的异常呈正相关关系,并且也可用来指示熔体的氧逸度(Burnham and Berry, 2012;Trailetal., 2012)。

千鹅冲钼矿花岗斑岩中的锆石比二长花岗岩中的锆石具有更低的Eu/Eu*比值,即更强的Eu异常,可能是由于斜长石的分离结晶作用(Hoskin and Schaltegger, 2003)。随着岩浆的演化,在锆石达到饱和之前,Eu2+优先进入斜长石,从而造成了演化程度更高的花岗斑岩中的锆石具有更强的Eu异常。二长花岗岩和花岗斑岩中的锆石的Ce4+/Ce3+比值平均值分别为287.4和55.9。二长花岗岩中的锆石中具有较高的Ce4+/Ce3+比值,与西藏玉龙和冈底斯地区以及智利东部的斑岩铜矿具有相似的特征(Ballardetal., 2002;Liangetal., 2006;辛洪波和曲晓明,2008),相比之下,花岗斑岩中锆石的Ce4+/Ce3+比值明显低于这些斑岩铜矿。钻孔中揭露的花岗斑岩远多与二长花岗岩且形成晚于二长花岗岩,推测成矿流体更可能来自花岗斑岩。已有研究表明,岩浆的氧逸度不是控制钼成矿的决定因素,岩浆中铁和钛的含量、岩浆流体含量以及岩浆上升过程中的对流机制都是影响钼富集的重要因素(Keppler and Wyllie, 1991;Shinogaraetal., 1995;Tacker and Candela, 1987)。

6.3 动力学背景

大别造山带形成于三叠纪华南与华北板块之间的碰撞对接(Lietal., 1993;Hackeretal., 1998),关于造山带内含柯石英和金刚石的超高压变质岩的研究显示大量的华南陆壳物质曾深俯冲到超过100km的深度(Wangetal., 1989)。然而,地震资料表明该造山带现今地壳的平均厚度约为35km,且缺少基性下地壳,暗示曾经发生了加厚山根的拆沉作用(Gaoetal., 1998a, b)。

大别造山带发育的大量白垩纪花岗岩在约130Ma发生明显的地球化学特征变化,即>130Ma形成的花岗岩具有高Sr/Y和(La/Yb)N比值以及低Y含量的特征,而形成于130Ma之后的花岗岩则不具备这一特征(Heetal., 2011;Wangetal., 2007)。研究表明,早期花岗岩(130~143Ma)来自石榴石为主要残留相的加厚下地壳的部分熔融(Heetal., 2011)。花岗岩地球化学特征在130Ma左右发生的转变指示大别造山带在约130Ma发生了下地壳的拆沉作用,所以之后形成的花岗岩来自减薄地壳的部分熔融(Heetal., 2011;Wangetal., 2007;Xuetal., 2007)。另外,北大别广泛分布的形成于123~130Ma的镁铁-超镁铁质岩的地球化学特征显示,它们具有明显的陆壳物质特征属性,可能由拆沉的下地壳熔体交代上地幔或岩石圈地幔形成(Huangetal., 2007)。所以,大别造山带在早白垩世发生了下地壳的拆沉作用(Gaoetal., 1998a, b)。

碰撞造山带的演化一般都要经历从挤压缩短向伸展减薄的构造体制的转换过程(Leech, 2001;Vanderhaeghe and Teyssier, 2001)。大别造山带早白垩世下地壳拆沉作用可能导致造山带的去山根作用、软流圈上涌及大规模地壳伸展(Ratschbacheretal., 2000, 2003;Bryantetal., 2004;Hackeretal., 2004;Liuetal., 2004)。Wuetal.(2007)通过对北大别混合岩的研究认为,大别山地区构造体制由挤压向伸展转换的时间约为145Ma。另外,大别造山带于早白垩世侵位的A型花岗岩也进一步证明了当时的伸展环境(王强等,2000;谢智等,2004)。

综上所述,千鹅冲钼矿的成岩成矿作用发生在大别山地区早白垩世的伸展构造背景下。事实上,整个中国东部在早白垩世总体处在伸展的构造体制下(Maoetal., 2011b;Wangetal., 2012)。在这一时期,不仅形成了东秦岭-大别钼矿带这一世界级钼多金属成矿省(Maoetal., 2008, 2011a),而且在中国东北地区(Yangetal. 2003;孙景贵等,2012)、华北克拉通内部(翟明国,2010;毛景文等,2005)、长江中下游地区(Duanetal., 2012;Maoetal., 2011c;Xieetal., 2008, 2011, 2012;袁顺达等,2010)以及华南地区(Maoetal., 2013)均发育了大规模的构造-岩浆-成矿事件(Maoetal., 2011b;Wangetal., 2012;Wuetal., 2005),它们均与中国东部乃至亚洲东北部晚中生代大规模地壳伸展的构造背景密切相关(Maoetal., 2003;Wangetal., 2012)。

7 结论

(1)千鹅冲钼矿区隐伏岩体中的二长花岗岩和花岗斑岩的SHRIMP锆石U-Pb年龄分别为130±2Ma和129±2Ma,与辉钼矿Re-Os年龄一致,为早白垩世,成岩成矿作用发生在一个很短的时限内(128~130Ma)。

(2)锆石Hf同位素特征显示千鹅冲岩体的物质来源主要为华南陆块北缘的古老地壳及少量年轻地幔组分,原岩中含有古元古代-太古代的基底岩石,二长花岗岩相比花岗斑岩具有更高的氧逸度。

(3)千鹅冲钼矿床形成于早白垩世的伸展构造体制下。大别造山带于早白垩世发生的下地壳拆沉作用导致的软流圈上涌及壳幔相互作用不仅形成了大规模的岩浆作用,也为斑岩型钼矿床提供了物质来源。

致谢中国地质科学院地质研究所刘建辉、矿产资源研究所郭春丽和国家地质实验测试中心孙东阳分别在SHRIMP锆石测年、锆石Hf同位素测试及锆石微量元素测试过程中提供了大量帮助,在此一并表示感谢。

Bali E, Keppler H and Audetat A. 2012. The mobility of W and Mo in subduction zone fluids and the Mo-W-Th-U systematics of island arc magmas. Earth and Planetary Science Letters, 351-352: 195-207

Ballard J, Palin M and Campbell I. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364

Beloisova BA, Griffin WL and O’Reilly SY. 2006. Zircon crystal morphology, trace element signatures and Hf Isotope composition as a tool for petrogenetic modeling: Examples from Eastern Australian granitoids. Journal of Petrology, 47(2): 329-353

Belousova EA, Griffin WL, O’Reilly SY and Fisher NI. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622

Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148: 243-258

Bolhar R, Weaver SD, Palin JM, Cole JW and Paterson LA. 2008. Systematics of zircon crystallisation in the Cretaceous separation point suite, New Zealand, using U-Pb isotopes, REE and Ti geothermometry. Contributions to Mineralogy Petrology, 156(2): 133-160

Bryant DL, Ayers JC, Gao S, Miller CF and Zhang H. 2004. Geochemical, age, and isotopic constraints on the location of the Sino-Korean-Yangtze suture and evolution of the northern Dabie complex, east central China. Geological Society of America Bulletin, 116(5-6): 698-717

Burnham, AD and Berry AJ. 2012. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochimica et Cosmochimica Acta, 95: 196-212

Chen FK, Guo JH, Jiang LL, Siebel W, Cong BL and Satir M. 2003. Provenance of the Beihuaiyang lower-grade metamorphic zone of the Dabie ultrahigh-pressure collisional orogen, China: Evidence from zircon ages. Journal of Asian Earth Sciences, 22(4): 343-352

Dai LQ, Zhao ZF, Zheng YF, Li QL, Yang YH and Dai MN. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth and Planetary Science Letters, 308(1): 229-244

Duan C, Li YH, Hou KJ, Yuan SD, Liu JL and Zhang C. 2012. Late Mesozoic ore-forming events in the Ningwu ore district, middle-lower Yangtze River polymetallic ore belt, East China: Evidence from zircon U-Pb geochronology and Hf isotopic compositions of the granodioritic stocks. Acta Geologica Sinica, 86(3): 719-736

Elhlou S, Belousova E, Griffin WL, Pearson NJ and O’reilly SY. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta, 70(18): A158

Fan WM, Guo F, Wang YJ and Zhang M. 2004. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: Partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen? Chemical Geology, 209(1-2): 27-48

Gao S, Luo TC, Zhang BR, Zhang HF, Han YM, Zhao ZD and Hu YK. 1998a. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975

Gao S, Zhang BR, Jin ZM, Kern H, Zhao ZD and Luo TC. 1998b. How mafic is the lower continental crust? Earth and Planetary Science Letters, 161(1): 101-117

Griffin WL, Pearson NJ, Belousova E, Jackson SE, Achterbergh EV, O’Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147

Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D and Dong SW. 1998. U-Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1-4): 215-230

Hacker BR, Ratshbacher L, Webb LE, Ireland TR, Calvert A, Dong S, Wenk HR and Chateigner D. 2000. Exhumation of ultrahigh-pressure continental crust in east-central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research, 105(B6): 13339-13364

Hacker BR, Ratschbacher L and Liu JG. 2004. Subduction, collision and exhumation in the ultrahigh-pressure Qinling-Dabie orogen. In: Malpas J, Fletcher C and Ali JR (eds.). Aspects of the Tectonic Evolution of China, Vol. 226. Geological Society, Special Publication, London, 157-175

He YS, Li SG, Hoefs J, Huang F, Liu SA and Hou ZH. 2011. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta, 75(13): 3815-3838

He YS, Li SG, Hoefs J and Kleinhanns IC. 2013. Sr-Nd-Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen: Constraints on the recycled lower continental crust. Lithos, 156-159: 204-217

Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53: 27-62

Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)

Huang F, Li SG, Dong F, Li QL, Chen FK, Wang Y and Yang W. 2007. Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos, 96(1-2): 151-169

Huang F, Li SG, Dong F, He YS and Chen FK. 2008. High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust. Chemical Geology, 255(1-2): 1-13

Huang F, Wang DH, Lu SM, Chen YC, Wang BH and Li C. 2011. Molybdenite Re-Os isotopic age of Shapinggou Mo deposit in Anhui Province and Mesozoic Mo ore-forming stages in East Qinling-Dabie Mountain region. Mineral Deposits, 30(6): 1039-1057 (in Chinese with English abstract)

Jahn BM, Wu FY, Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157(1-2): 119-146

Keppler H and Wyllie PJ. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in systems halpogranite-H2O-HCl and halogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109(2): 139-150

Leech ML. 2001. Arrested orogenic development: Eclogitization, delamination, and tectonic collapse. Earth and Planetary Science Letters, 185(1-2): 149-159

Li FL. 2011. Geological characteristics and metallogenic epoch of Qianechong large-size porphyry mo deposit at the northern foot of Dabie Mountains, He’nan Province. Mineral Deposits, 30(3): 457-468 (in Chinese with English abstract)

Li HM, Ye HS, Wang DH, Chen YC, Qu WJ and Du AD. 2009. Re-Os dating of molybdenites from Zhaiwa Mo deposit in Xiong’er Mountain, western Henan Province, and its geological significance. Mineral Deposits, 28(2): 133-142 (in Chinese with English abstract)

Li SG, Xiao YL, Liou DL, Chen YZ, Ge NJ, Zhang ZQ, Sun SS, Cong BL, Zhang RY, Hart SR and Wang SS. 1993. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites-timing and processes. Chemical Geology, 109(1-4): 89-111

Li SG, Huang F, Nie YH, Han WL, Long G, Li HM, Zhang SQ and Zhang ZH. 2001. Geochemical and geochronological constraints on the suture location between the North and South China blocks in the Dabie orogen, central China. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 655-672

Li SG and Yang W. 2003. Decoupling of surface and subsurface sutures in the Dabie orogen and a continent-collisional lithospheric-wedging model: Sr-Nd-Pb isotopic evidences of Mesozoic igneous rocks in eastern China. Chinese Science Bulletin, 48(8): 831-838

Li Y, Li N, Yang YF, Wang P, Mi M, Zhang J, Chen HJ and Chen YJ. 2013. Geological features and geodynamic settings of the Mo deposits in the northern segment of the Dabie Mountains. Acta Petrologica Sinica, 29(1): 95-106 (in Chinese with English abstract)

Li YF, Mao JW, Hu HB, Guo BJ and Bai FJ. 2005. Geology, distribution, types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area. Mineral Deposits, 24(3): 292-304 (in Chinese with English abstract)

Liang HY, Camplel HI, Allen C, Sun WD, Liu CQ, Yu HX, Xie YW and Zhang YQ. 2006. Zircon Ce4+/Ce3+ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152-159

Liu FL and Xue HM. 2007. Review and prospect of SHRIMP U-Pb dating on zircons from Sulu-Dabie UHP metamorphic rocks. Acta Petrologica Sinica, 23(11): 2737-2756 (in Chinese with English abstract)

Liu XC, Jahn BM, Liu DY, Dong SW and Li SZ. 2004. SHRIMP U-Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong’an Block), China, and its tectonic implications. Tectonophysics, 394: 171-192

Liu YC, Li SG, Xu ST, Jahn BM, Zheng YF, Zhang ZQ, Jiang LL, Chen GB and Wu WP. 2005. Geochemistry and geochronology of eclogites from the Northern Dabie Mountains, central China. Journal of Asian Earth Sciences, 25: 431-443

Ludwig K. 2003. User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 70

Mao JW, Zhang ZH, Yu JJ and Niu BG. 2003. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas: Implication from the highly precise dating of ore deposits. Science China (Series D) 46(8): 838-851

Mao JW, Xie GQ, Zhang ZH, Li XF, Wang YT, Zhang CQ and Li YF. 2005. Mesozoic large scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract)

Mao JW, Xie GQ, Bierlein F, Qu WJ, Du AD, Ye HS, Pirajno F, Li HM, Guo BJ, Li YF and Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta, 72(18): 4607-4626

Mao JW, Pirajno F, Xiang JF, Gao JJ, Ye HS, Li YF and Guo BJ. 2011a. Mesozoic molybdenum deposits in the East Qinling-Dabie Orogenic belt: Characteristics and tectonic settings. Ore Geology Reviews, 43(1): 264-293

Mao JW, Pirajno F and Cook N. 2011b. Mesozoic metallogeny in East China and corresponding geodynamic settings: An introduction to the special issue. Ore Geology Reviews, 43(1): 1-7

Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011c. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe andmagnetite-apatite deposits along Middle-Lower Yangtze River Valley, eastern China. Ore Geology Reviews, 43(1): 294-314

Mao JW, Cheng YB, Chen MH and Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294

Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ and Tayloy RN. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectronmetry: Insights into the depleted mantle. Chemical Geology, 149(3-4): 211-233

Patchett PJ, Kouvo O, Hedge CE and Tatsumoto M. 1981. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contributions to Mineralogy Petrology, 78(3): 279-297

Ratschbacher L, Hacker BR, Webb LE, McWilliams M, Ireland T, Dong SW, Calvert A, Chateigner D and Wenk HR. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research, 105(B6): 13303-13338

Ratschbacher L, Hacker BR, Calvert A, Webb LE, Grimmer JC, Mcwilliams MO, Ireland T, Dong S and Hu J. 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366(1-2): 1-53

Rubatto D and Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by IOM microprobe: Some examples from the western Alps. In: Cathodoluminescence in Geoscience. Heidelberg, Germany: Springer-Verlag, 373-400

Scherer EE, Cameron KL and Blichert JT. 2000. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413-3432

Shinogara H, Kazahaya K and Lowenstern JB. 1995. Volatile transport in a convecting magma column: Implications for porphyry Mo mineralization. Geology, 23(12): 1091-1094

Soderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324

Sun JG, Zhang Y, Xing SW, Zhao KQ, Zhang ZJ, Bai LA, Ma YB and Liu YS. 2012. Genetic types, ore-forming age and geodynamic setting of endogenetic molybdenum deposits in the eastern edge of Xing-Meng orogenic belt. Acta Petrologica Sinica, 28(4): 1317-1332 (in Chinese with English abstract)

Sun SS and McDonoung WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 315-345

Tacker RC and Candela PA. 1987. Partitioning of molybdenum between magnetite and melt: A preliminary experimental study of partitioning of ore metals between silicic magmas and crystalline phases. Economic Geology, 82(7): 1805-1826

Trail D, Bruce Watson E and Tailby ND. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97: 70-87

Vanderhaeghe O and Teyssier C. 2001. Partial melting and flow of orogens. Tectonophysics, 342(3-4): 451-472

Wang Q, Zhao Z and Xiong X. 2000. The ascertainment of Late-Yanshanian A-type granite in Tongbai-Dabie Orogenic Belt. Acta Petrologica et Mineralogica, 19(4): 297-306 (in Chinese with English abstract)

Wang Q, Wyman DA, Xu JF, Jian P, Zhao ZH, Li CF, Xu W, Ma JL and He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636

Wang T, Guo L, Zheng YD, Donskaya T, Gladkochub D, Zeng LS, Li JB, Wang YB and Mazukabzov A. 2012. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154: 315-345

Wang XM, Liou JG and Mao HK. 1989. Coesite-bearing eclogite from the Dabie Mountains in Central China. Geology, 17(12): 1085-1088

Wang YJ, Fan WM, Peng TP, Zhang HF and Guo F. 2005. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie orogen, Central China: Evidence from40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic igneous rocks. Chemical Geology, 220(3-4): 165-189

Wei GQ, Yao JM, Zhao TP, Sun YL, Li J, Yuan ZL and Qiao B. 2009. Discovery of ~1.9Ga Mo deposit in the East Qinling orogen: Molybdenite Re-Os ages of the Longmendian Mo deposit in the Henan Province. Acta Petrologica Sinica, 25(11): 2747-2751 (in Chinese with English abstract)

Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC III and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 7: 1-35

Wu FY, Lin JQ, Simon A, Wilde SA, Zhang XO and Yang JH. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planetary Science Letters, 233(1-2): 103-119

Wu YB, Zheng YF, Zhang SB, Zhao ZF, Wu FY and Liu XM. 2007. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: Constraints on partial melting. Journal of Metamorphic Geology, 25(9): 991-1009

Xiang BW. 2009. Research on the structural thermochronology and deformation modeling for post-orogenic dome structures of the north Dabie. Ph. D. Dissertation. Hefei: Hefei University of Technology (in Chinese with English summary)

Xie GQ, Mao JW, Li RL and Bierlein FP. 2008. Geochemistry and Nd-Sr isotopic studies of Late Mesozoic granitoids in the southeastern Hubei Province, Middle-Lower Yangtze River belt, eastern China: Petrogenesis and tectonic setting. Lithos, 104(1-4): 216-230

Xie GQ, Mao JW and Zhao HJ. 2011. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle-Lower Yangtze River belt (MLYRB), East China. Lithos, 125(1-2): 693-710

Xie GQ, Mao JW, Zhao HJ, Duan C and Yao L. 2012. Zircon U-Pb and phlogopite40Ar-39Ar age of the Chengchao and Jinshandian skarn Fe deposits, Southeast Hubei Province, Middle-Lower Yangtze River valley metallogenic belt, China. Mineralium Deposita, 47(6): 633-652

Xie Z, Zheng YF, Yan J and Qian H. 2004. Source evolution relationship between A-type granites and mafic rocks from Shacun in Dabieshan. Acta Petrologica Sinica, 20(5): 1175-1184 (in Chinese with English abstract)

Xin HB and Qu XM. 2008. Relative oxidation states of ore-bearing porphyries inferred from Ce(IV)/Ce(III) ratio in zircon: Application to the porphyry copper belt at Gangense, Tibet. Acta Mineralogica Sinica, 28(2): 152-160 (in Chinese with English abstract)

Xiong Q, Zheng JP, Yu CM, Su YP, Tang HY and Zhang ZH. 2008. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: Signification for the Yangtze continental cratonization in Paleoproterozoic. Chinese Science Bulletin, 54(3): 436-446

Xu HJ, Ma CQ and Ye K. 2007. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry. Chemical Geology, 240(3-4): 238-259

Xu HJ, Ma CQ, Zhang J and Ye K. 2013. Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China: Petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Research, 23(1): 190-207

Xu ST, Su W and Liu YC. 2000. Discovery of the eclogite and its petrography in the northern Dabie Mountain. Chinese Science Bulletin, 45(3): 273-278

Xu ST, Liu Y, Chen G, Roberto C, France R, He M and Liu H. 2003. New finding of micro-diamonds in eclogites from Dabie-Sulu region in central-eastern China. Chinese Science Bulletin, 48(10): 988-994

Yang JH, Wu FY and Wilde SA. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geology Reviews, 23(3-4): 125-152

Yang MZ, Zeng JN, Qin YJ, Li FL and Wan SQ. 2010. LA-ICP-MS zircon U-Pb and molybdenite Re-Os dating for Qian’echong porphyry-type Mo deposit in northern Dabie, China, and its geological significance. Geological Science and Technology Information, 29(5): 35-45 (in Chinese with English abstract)

Yang YF, Chen YJ, Li N, Mi M, Xu YL, Li FL and Wan SQ. 2013. Fluid inclusion and isotope geochemistry of the Qian’echong giant porphyry Mo deposit, Dabie Shan, China: A case of NaCl-poor, CO2-rich fluid systems. Journal of Geochemical Exploration, 124: 1-13

Ye HS, Mao JW, Li YF, Guo BJ, Zhang CQ, Liu J, Yan QR and Liu GY. 2006. SHRIMP zircon U-Pb and molybdenite Re-Os dating for the superlarge Donggou porphyry Mo deposit in East Qinling, China, and its geological implication. Acta Geologica Sinica, 80(7): 1078-1088 (in Chinese with English abstract)

You ZD, Han YJ, Yang WR, Zhang ZM, Wei BZ and Liu R. 1996. The High-Pressure and Ultra High-Pressure Metamorphic Belt in the East Qinling and Dabie Mountains, China. Wuhan: China University of Geosciences Press, 1-150

Yuan SD, Hou KJ and Liu M. 2010. Timing of mineralization and geodynamic framework of iron-oxid-apatite deposits in Ningwu Cretaceous basin in the Middle-Lower Reaches of the Yangtze River, China: Constraints from Ar-Ar dating on phlogopites. Acta Petrologica Sinica, 26(3): 797-808 (in Chinese with English abstract)

Zhai MG. 2010. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36 (in Chinese with English abstract)

Zhang GW, Zhang BR, Yuan XC and Xiao QH. 2001. Qinling Belt and Continental Dynamics. Beijing: Science Press, 1-729 (in Chinese)

Zhang H, Gao S, Zhong Z, Zhang B, Zhang L and Hu S. 2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology, 186(3-4): 281-299

Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006. Zircon isotope evidence for ≥3.5Ga continental crust in the Yangtze craton of China. Precambrian Research, 146(1-2): 16-34

Zheng JP, Griffin WL, O’Reilly SY, Zhang M, Pearson N and Pan YM. 2006. Widespread Archean basement beneath the Yangtze craton. Geology, 34(6): 417-420

Zheng YF, Fu B, Gong B and Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Science Reviews, 62(1-2): 105-161

Zheng YF, Zhou JB, Wu YB and Xie Z. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. International Geology Review, 47(8): 851-871

Zheng YF and Zhang SB. 2007. Formation and evolution of Precambrian continental crust of southern China. Chinese Science Bulletin, 52(1): 1-10

Zhao ZF, Zheng YF, Wei CS, Wu YB, Chen FK and Jahn BM. 2005. Zircon U-Pb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos, 83(1-2): 1-28

Zhao ZF, Zheng YF, Wei CS and Wu YB. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93(3-4): 248-272

Zhao ZF, Zheng YF, Wei CS, Chen FK, Liu XM and Wu FY. 2008. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology, 253(3-4): 222-242

Zhao ZF and Zheng YF. 2009. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Science in China (Series D), 52(9): 1295-1318

Zhao ZF, Zheng YF, Wei CS and Wu FY. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos, 126(1-2): 99-114

附中文参考文献

侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604

黄凡, 王登红, 陆三明, 陈毓川, 王波华, 李超. 2011. 安徽省金寨县沙坪沟钼矿辉钼矿Re-Os年龄——兼论东秦岭-大别山中生代钼成矿作用期次划分. 矿床地质, 30(6): 1039-1057

李法岭. 2011. 河南大别山北麓千鹅冲特大隐伏斑岩型钼矿床地质特征及成矿时代. 矿床地质, 30(3): 457-468

李厚民, 叶会寿, 王登红, 陈毓川, 屈文俊, 杜安道. 2009. 豫西熊耳山寨凹钼矿床辉钼矿铼-锇年龄及其地质意义. 矿床地质, 28(2): 133-142

李毅, 李诺, 杨永飞, 王玭, 糜梅, 张静, 陈红瑾, 陈衍景. 2013. 大别山北麓钼矿床地质特征和地球动力学背景. 岩石学报, 29(1): 95-106

李永峰, 毛景文, 胡华斌, 郭保健, 白凤军. 2005. 东秦岭钼矿类型、特征、成矿时代及其地球动力学背景. 矿床地质, 22(3): 292-304

刘福来, 薛怀民. 2007. 苏鲁-大别超高压岩石中锆石SHRIMP U-Pb定年研究——综述和最新进展. 岩石学报. 23(11): 2737-2756

毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188

孙景贵, 张勇, 邢树文, 赵克强, 张增杰, 白令安, 马玉波, 刘勇胜. 2012. 兴蒙造山带东缘内生钼矿床的成因类型、成矿年代及成矿动力学背景. 岩石学报, 28(4): 1317-1332

王强, 赵振华, 熊小林. 2000. 桐柏-大别造山带燕山晚期A型花岗岩的厘定. 岩石矿物学杂志, 19(4): 297-306

魏庆国, 姚军明, 赵太平, 孙亚莉, 李晶, 原振雷, 乔波. 2009. 东秦岭发现~1.9Ga钼矿床——河南龙门店钼矿床Re-Os定年. 岩石学报, 25(11): 2747-2751

向必伟. 2009. 北大别造山后伸展过程构造热年代学与变形模拟研究. 博士学位论文. 合肥: 合肥工业大学, 1-117

谢智, 郑永飞, 闫峻, 钱卉. 2004. 大别山沙村中生代A型花岗岩和基性岩的源区演化关系.岩石学报, 20(5): 1175-1184

辛洪波, 曲晓明. 2008. 西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态: 来自锆石Ce(IV)/Ce(III)比值的约束. 矿物学报, 28(2): 152-160

杨梅珍, 曾键年, 覃永军, 李法岭, 万守全. 2010. 大别山北缘千鹅冲斑岩型钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义. 地质科技情报, 29(5): 35-45

叶会寿, 毛景文, 李永峰, 郭保健, 张长青, 刘珺, 闫全人, 刘国印. 2006. 东秦岭东沟超大型斑岩型钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义. 地质学报, 80(7): 1078-1088

袁顺达, 侯可军, 刘敏. 2010. 安徽宁芜地区铁氧化物-磷灰石矿床中金云母Ar-Ar定年及其地球动力学意义. 岩石学报, 26(3): 797-808

翟明国. 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24-36

张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-729

猜你喜欢
花岗钼矿斑岩
专利名称:一种钼矿和钨矿的联合冶炼工艺
安山玢岩-花岗斑岩混合矿石的磨矿产品粒度特性研究
万众一心战疫情
浅析涞源县大黄峪钼矿成矿远景
辽宁调兵山西调斑岩型钼矿床特征及找矿标志
广西丹池成矿带芒场矿田岩浆岩源区特征及锆石U-Pb年龄分析
金盆金矿矿床地质特征及找矿方向探讨
柴北缘阿木尼克山地区斑岩系Cu、Mo-Pb、Zn、Ag-Au成矿模型初步研究
全球十大钼矿
斑岩型矿床含矿斑岩与非含矿斑岩鉴定特征综述