段超 李延河 魏明辉 杨云 侯可军 陈小丹 邹斌DUAN Chao, LI YanHe, WEI MingHui, YANG Yun, HOU KeJun, CHEN XiaoDan and ZOU Bin
1. 国土资源部成矿作用和资源评价重点实验室,中国地质科学院矿产资源研究所,北京 1000372. 河北省地勘局第三地质大队,张家口 0750001. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China2. The 3rd Geological Team of Hebei Geology and Mining Bureau, Zhangjiakou 075000, China2013-09-10 收稿, 2013-11-25 改回.
华北克拉通是全球最古老的克拉通之一,具有3.8Ga的漫长的演化历史, 经历了多阶段的构造演化和强烈的变质改造,记录了几乎所有的地壳早期演化与中生代以来的重大构造事件(翟明国,2004,2008,2012;Zhaoetal.,2005;Luetal., 2008;吴昌华,2007;王惠初等,2011;郑永飞和吴福元,2009;朱日祥和郑天愉,2009)(图1)。目前,对华北克拉通前寒武纪演化过程的认识仍存在较多的争议(翟明国,2012;翟明国和彭澎,2007;Kusky and Li,2003;Polatetal., 2006;Li and Kusky,2007;Zhaoetal., 2001,2005,2012;Kröneretal., 2005a,b)。通过对华北克拉通沉积岩、变质岩和岩浆岩的锆石年代学研究,逐步精确地厘定了华北克拉通地质演化序列,以及前寒武纪地层的形成时代框架(李怀坤等,2011;和政军等,2011)。
华北克拉通前寒武纪矿产资源丰富,铁、稀土、铅锌、菱镁矿等储量巨大,其形成与克拉通的演化关系密切,表现出特征的时空分布规律(翟明国,2010;沈保丰等,2006)。铁矿床是华北克拉通前寒武纪最重要的矿产之一,条带状硅铁建造(BIF)型铁矿床是华北克拉通前寒武纪的标志性矿产,其资源储量约占我国沉积变质型铁矿总量的80%,形成时代集中于2.5~2.6Ga(赵一鸣,2013;李延河等,2011,2012;李厚民等,2012;万渝生等,2012;张连昌等,2012;沈保丰,2012)。此后发育的铁矿床主要有与斜长杂岩体有关的钒-钛-铁-磷矿床(大庙式)(1720Ma前后)(孙静等,2009;赵太平等,2004;Yeetal.,1996;周永昶和袁朝,1989)、与陆缘-浅海沉积有关的沉积型铁矿床(宣龙式)以及白云鄂博稀土-铌-铁矿床。
图2 样品标本采样位置(a、b)及显微镜下照片(c、d)Fig.2 Outcrop photos of the sandshale (a, b) and its micrographs (c, d)
其中,宣龙式铁矿床是我国铁矿床中沉积成因铁矿床的重要代表,尽管其形成规模较小,但形成于克拉通两次重要事件(25亿年、18亿年)之后,是华北克拉通前寒武纪成岩成矿作用的一部分,对成矿作用演化及地质构造环境演化的研究具有重要的标示意义。但是,目前对它的形成时代以及与其他前寒武纪铁矿床成因联系等方面的研究较少。宣龙式铁矿主要发育于河北宣化一带,赋存于中元古代串岭沟组底部。本文对宣化姜家寨宣龙式铁矿床顶部砂页岩中碎屑锆石进行年代学研究以期约束宣龙式铁矿床的成矿时代,并为揭示华北克拉通中元古代前的演化提供新证据。
根据目前比较流行的一种观点,华北克拉通可划分为三个次级构造单元:东部陆块、西部陆块和中部造山带(Zhaoetal., 2001,2005)。其中,中部带以信阳-开封-石家庄-建平断裂带和华山-离石-大同-多伦断裂带分别与东、西陆块为界。姜家寨铁矿床属于宣龙式铁矿,地处宣化以西45km、龙关镇以南8km,位于华北克拉通中部带北部(图1),燕山台褶带宣龙复式向斜中。铁矿床呈层状赋存于长城系串岭沟组底部砂页岩。该层砂页岩在宣化地区广泛分布,有的地段碳含量较高,呈黑色,富钾。测试样品采自矿体顶板砂页岩(图2),采样点地理座标为E115°34′54.66″,N40°42′24.73″。岩性为砂页岩,呈块状构造,夹薄层砂岩(1~2cm),主要组成矿物为石英(30%~35%)、泥质成分约60%,含少量的长石、绿泥石和白云母等(图2)。
测试样品经破碎后,通过常规重力和磁选方法分选出锆石,在双目镜下挑选。将待测锆石颗粒置于环氧树脂中制靶,然后磨至一半,用于透射、反射、阴极发光(CL)图像分析和U-Pb定年测试。锆石阴极发光图像分析在中国地质科学院地质研究所离子探针中心HITACHI S3000-N型扫描电子显微镜上完成。
图3 姜家寨宣龙式铁矿串岭沟组底部砂页岩典型碎屑锆石阴极发光照片与年龄数据Fig.3 Ages and cathodoluminescence images of zircons from the lower part of the Chuanlinggou Formation in Jiangjiazhai iron deposit
LA-MC-ICP-MS锆石U-Pb定年测试分析在中国地质科学院矿产资源研究所MC-ICP-MS实验室完成,锆石定年分析所用仪器为Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。所用激光剥蚀斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。信号较小的207Pb,206Pb,204Pb(+204Hg),202Hg用离子计数器(multi-ion-counters)接收,208Pb,232Th,238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接收并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据。均匀锆石颗粒207Pb/206Pb,206Pb/238U,207Pb/235U的测试精度均为2%(2σ)左右,对锆石标准的定年精度和准确度在1%(2σ)左右。LA-MC-ICP-MS激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1(年龄600Ma,Jacksonetal.,2004)进行调试仪器,使之达到最优状态, 锆石U-Pb定年以锆石GJ-1为外标,U、Th含量以锆石M257(U:923×10-6;Th:439×10-6; Th/U:0.475, Nasdalaetal.,2008)为外标进行校正。测试过程中在每测定10个样品前后重复测定两个锆石标准,对样品进行校正,并测量一个锆石标准Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSDataCal程序(Liuetal.,2010),测量过程中绝大多数分析点206Pb/204Pb>1000,未进行普通铅校正,204Pb由离子计数器检测,204Pb含量异常高的分析点可能受包体等普通Pb的影响,对204Pb含量异常高的分析点在计算时剔除,锆石年龄谐和图用Isoplot 3.0程序获得。详细实验测试流程可参见侯可军等(2009)文章。样品分析过程中,Plesovice标样作为未知样品的分析结果为335.6±4.7Ma(n=10,2σ),对应的年龄推荐值为337.13±0.37(2σ)(Slámaetal.,2008),两者在误差范围内完全一致。单个测定的数据点误差采用1σ,年龄结果采用207Pb/206Pb加权平均值,误差为2σ(95%的置信度)。
本文对姜家寨铁矿床矿体上覆围岩样品100颗碎屑锆石进行了年代学测试,锆石颗粒磨圆度好,呈浑圆状,粒径大小不一分布于100~500μm(图3),测试结果见表1。去掉其中6个谐和度低于95%的测试年龄。94颗锆石Th含量为5×10-6~561×10-6;U含量为8×10-6~220×10-6;Th/U比值为0.2~4.5,多数点集中于0.5~1.5之间(图4)。测试锆石Th/U比值多大于0.4,且环带发育,多为岩浆成因,代表沉积岩源区锆石寄主侵入岩或火山岩的形成年龄(图4)。
图4 锆石Th/U-年龄图解Fig.4 Diagram of Th/U vs. age of zircons from the Chuanlinggou Formation
碎屑锆石年龄测试结果通过线性概率和概率密度分析(图5),识别出三组主要峰值年龄,对他们进行加权平均年龄计算得出:(1) 1738.9~1799.1Ma,加权平均年龄为1774.1±7.9Ma(n=21,MSWD=0.72);(2) 1838.9~1857.1Ma,加权平均年龄为1849.0±7.8Ma(n=22,MSWD=0.08);(3) 2435.5~2464.8Ma,加权平均年龄为2453.0±7.8Ma(n=10,MSWD=0.71)(图5、图6)。此外,碎屑锆石年代学测试显示,在1872.2~1906.5Ma,1944.5~1999.7Ma出现较小峰值,少量锆石年龄散布于2068.2~2394.4Ma及2525.6~2611.11Ma(图5)。测试结果中存在4颗较年轻的岩浆成因碎屑锆石谐和年龄: JJZ12-08-2,1657.4±17.4Ma;JJZ12-08-1,1661.1±12.2Ma;JJZ12-08-84,1683.3±20.2Ma和JJZ12-08-17,1694.4±29.6Ma。4颗锆石CL图像显示锆石环带发育,测试位置位于锆石幔部,为岩浆锆石年龄。
图5 姜家寨铁矿串岭沟组碎屑锆石年龄概率分布图(a)和线性概率图(b)Fig.5 Probability density map (a) and linear probability plots (b) of ages of zircons from the Chuanlinggou Formation in Jiangjiazhai iron deposit
近年来,随着高精度锆石年代学测试技术的发展,对华北克拉通中元古代地层的年代学研究有了快速的发展,得到了许多重要的年代学数据(图7),尤其是对中元古代的地层的时代界限有了新的认识(李怀坤等,2011;和政军等,2011)。
李怀坤等(2011)、和政军等(2011)、高维等(2008)对侵入密云群的环斑花岗岩进行的年代学研究得到其形成时代为1673~1708Ma,由此推断其不整合上覆的常州沟组沉积岩形成时代应不早于1673Ma。高林志等(2009)测得蓟县侵入串岭沟组的辉绿岩形成时代为1638±14Ma。张拴宏等(2013)测得蓟县青山岭侵入串岭沟组闪长玢岩脉锆石年龄为1634±9Ma。此外,孙会一等(2013)测得串岭沟组上部凝灰岩形成时代为1621±12Ma,此数据略小于前人获得的侵入串岭沟组岩脉的年龄,在误差范围内与其相似。根据上述研究,可以初步限定串岭沟组的形成时代应处于1673~1638Ma之间。
本次研究,通过对串岭沟组底部砂页岩碎屑锆石U-Pb年代学研究,获得了4颗较年轻的岩浆锆石谐和年龄(JJZ12-08-2,1657.4±17.4Ma;JJZ12-08-1,1661.1±12.2Ma;JJZ12-08-84,1683.3±20.2Ma和JJZ12-08-17,1694.4±29.6Ma),进一步的限定了串岭沟组的形成下限,其形成时代不早于1657Ma。串岭沟组的形成时代应处于阈值1657~1638Ma之间,与张拴宏等(2013)推测的串岭沟组沉积的年龄(16.5~16.4亿年)一致。同时,结合本地区常州沟组地层的厚度,本次研究获得的数据亦支持李怀坤等(2011)提出的对长城系地层年代学的修改建议,长城系开始的时间应晚于1673Ma,可能为张拴宏等(2013)推测的16.6亿年。
如上所述,串岭沟组下部砂页岩是宣龙式铁矿床的赋矿层位,对姜家寨铁矿床赋矿围岩的研究约束了其形成时代,同时也制约了铁矿床的形成时代。宣龙式铁矿床的形成时代小于或接近于1657Ma。
华北克拉通是全球最古老的克拉通之一, 经历了多阶段的构造演化和强烈的变质改造,目前对华北克拉通的形成时间以及演化过程仍然存在争议,主要有以下三种认识:(1)华北克拉通在太古代已开始形成陆核,然后由多个独立块体拼贴而成(白瑾等,1993;伍家善等,1998;Zhaietal., 2000;翟明国,2010,2012;Zhai and Santosh,2011),进一步的研究认为华北克拉通在新太古代末(2.5Ga),微陆块被火山-沉积岩系焊接,随后发生变质作用和花岗岩化,完成稳定大陆的克拉通化,古元古代(1.85Ga)经历了一次挤压构造事件(翟明国,2012;翟明国和彭澎,2007);(2)华北克拉通东、西块体约于 2.5Ga 左右碰撞拼合(Kusky and Li,2003;Polatetal.,2006;Li and Kusky,2007;Kusky,2011);(3)华北克拉通西部陆块与东部陆块沿中部带发生碰撞拼合,在1.85Ga形成现今统一的华北克拉通结晶基底(Zhaoetal.,2001,2005,2012;赵国春等,2002; Wildeetal.,2002;Kröneretal.,2005a,b,2006;Wilde and Zhao,2005;Zhangetal.,2007;Wuetal.,2000;刘超辉等,2012)。另有研究认为板块构造主导了古元古代的地壳运动和地幔相互作用,华北克拉通是Columbia超大陆的组成部分(Zhai and Liu,2003; 赵国春等,2002;陆松年等,2002; Zhaoetal., 2002a,2012;Wildeetal.,2002;Rogers and Santosh, 2002;Santoshetal., 2006)。
本文研究获得的华北克拉通中部带串岭沟组底部砂页岩中两组峰值年龄2.45Ga和 1.85Ga,分别清楚地记录了太古代晚期(2.5Ga左右)华北克拉通深变质作用和花岗岩化的时代和古元古代(1.85Ga)挤压构造事件或统一的华北克拉通结晶基底形成时代。尽管目前对克拉通拼合时间以及构造演化方式的争议依然存在,但1.8Ga之前的这两次重要的构造-热事件的形成时代在越来越多的得到了精确的趋同的年代学数据的证实(Diwuetal.,2012;刘超辉等,2012;Yangetal.,2012;Wuetal., 2000; Zhaoetal.,2012;Wilde and Zhao, 2005;Guoetal.,2005;Kröneretal.,2005a,b;翟明国和彭澎,2007;Lietal.,2010;Gengetal.,2006;王惠初等,2005;彭澎和翟明国,2002)。
图6 姜家寨铁矿串岭沟组碎屑锆石三组主要峰值年龄谐和图Fig.6 Concordia plots for the three major age peaks of detrital zircons from the Chuanlinggou Formation in Jiangjiazhai iron deposit
图7 华北克拉通长城系地层锆石U-Pb年代学制约Fig.7 Zircon U-Pb age constraints on the Changcheng System strata in the NCC
华北克拉通在1.85~1.7Ga期间进入伸展构造体制(翟明国和彭澎,2007;Pengetal.,2005),内部及边部发生了拉张,抬升等地质事件,以富镁基性岩墙、斜长岩-辉长岩-纹长二长岩-环斑花岗岩以及A型花岗岩和富钾火山岩广泛发育为特征,形成时代集中于18~16亿年,对应于古元古代末-中元古代初Columbia全球性的非造山岩浆活动,是一次超大陆裂解事件(Zhai and Liu,2003;翟明国,2004,2012;Windley,1995;郁建华等,1996;Rämöetal.,1995;赵太平等,2004;Zhaoetal.,2002b;彭澎等,2004;Luetal.,2002,2008;任康绪等,2006; Pengetal.,2005,2007;Kröneretal.,2005a, b,2006;杨进辉等,2005;Yangetal.,2012)。
翟明国(2004)研究认为古元古代基性岩墙群均匀的分布在华北克拉通的各个地区,不同地区岩墙的展布特征有所不同,根据变质情况将其分为2类,一类遭受了高压麻粒岩-麻粒岩相变质作用,另一类未变质。其具有大陆碱性玄武岩和橄榄玄武岩的特征,富集Fe-Ti副矿物,有富集地幔的源区特征。变质岩墙多形成于或变质于1920~1890Ma,未变质的岩墙多形成于1800~1760Ma(张臣等,1994;彭澎等,2004)。彭澎等(2004)通过地质地球化学特征对比研究认为,晋冀蒙交界地区高密度发育的基性岩墙群可划分为三组:S-Ⅰ岩群NNW向展布,相对低FeO-TiO2-P2O5,成分相当于高MgO拉斑玄武岩;S-ⅡNNW向展布,岩墙高FeO-TiO2-P2O5,表现为Fenner趋势,由碱性到亚碱性高Fe玄武岩组成;S-EW岩墙EW向展布,表现为Bowen趋势,高Fe拉斑玄武岩和安山岩。他们都经历过壳幔的混染作用,而Fenner和Bowen趋势同时出现与峨眉山大火山岩省的特征类似,源于深部地幔,亦表明了拉张构造环境的特征。Luetal.(2008)对富镁基性岩墙、斜长岩-辉长岩-纹长二长岩-环斑花岗岩以及A型花岗岩和富钾火山岩形成年代学数据总结研究提出在1.8~1.6Ga时间内华北克拉通的拉张事件可分为三幕(时期):1.78Ga、1.70Ga和1.62Ga。
在这一时期中(1720Ma前后),以河北大庙地区为代表,发育有典型的矿浆型钒钛磁铁矿-磷灰石矿床。年代学和地球化学研究得出大庙斜长杂岩体中苏长岩(辉长岩)与大庙式钒钛磁铁矿-磷灰石铁矿具有同源特征,铁矿床的形成与斜长岩-苏长岩-辉长岩杂岩体有着密切的联系,是同一幔源岩浆不同演化阶段的产物(孙静等,2009;赵太平等,2004;Yeetal.,1996;周永昶和袁朝,1989)。
本文对姜家寨铁矿床串岭沟组砂页岩碎屑锆石年代学的研究中,测试得到1774.1Ma的峰值年龄与基性岩墙群一致,记录并证实了1.8Ga后在华北克拉通中部带发生的拉张-抬升、壳幔作用和地幔上涌的地质事件,揭示了华北克拉通演化在其不同陆块间演化整体的同一性。目前,尽管对于1.8~1.6Ga发育的富镁基性岩墙、斜长岩-辉长岩-纹长二长岩-环斑花岗岩以及A型花岗岩和富钾火山岩起始时间、相互关系、成岩成矿间的相互作用仍有很多未解答的问题,但是,串岭沟组的峰值年代学数据清楚表明了这次岩浆事件在该地区活动强烈,沉积岩在形成中接受了来自华北克拉通抬升事件中产生的基性岩墙群的剥蚀产物,他们是沉积岩形成中的主要的物质来源之一,基于时间和区域的一致性,我们推断这一时期上述富含铁质的基性岩墙群也极有可能是宣龙式铁矿床中铁质的主要物源之一。
(1)对宣化姜家寨铁矿床串岭沟组铁矿体上部砂页岩进行的LA-MC-ICP-MS年代学研究,获得了三组主要的峰值年龄,加权平均值分别为1774.1±7.9Ma、1849.0±7.8Ma和2453.0±7.8Ma。代表了华北克拉通中部带经历的三期较为重要的地质构造、岩浆作用和变质作用事件的时间。
(2)我们获得的4颗较年轻的岩浆锆石,年龄为1657.4~1694.4Ma,这代表了沉积岩形成的时间下限,同时制约了姜家寨宣龙式铁矿床的形成时代不早于1657Ma。
(3)形成于17~18亿年的富铁基性岩墙群是串岭沟组的主要物源之一,其也可能是宣龙式铁矿床中铁质的主要物源之一。
致谢本文在野外地质调查期间得到了河北省地勘局第三地质大队的热情帮助和支持;审稿专家对本文提出了修改意见和下一步工作的建议;在此一并致以衷心的感谢。
Bai J, Huang XG, Dai FY and Wu CH. 1993. The Precambrian Evolution of China. Beijing: Geological Publishing House, 65-79 (in Chinese with English abstract)
Diwu CR, Sun Y, Zhang H, Wang Q, Guo AL and Fan LG. 2012. Episodic tectonothermal events of the western North China Craton and North Qinling Orogenic Belt in central China: Constraints from detrital zircon U-Pb ages. Journal of Asian Earth Sciences, 47: 107-122
Gao LZ, Zhang CH, Yin CY, Shi XY, Wang ZQ, Liu YM, Liu PJ, Tang F and Song B. 2008. SHRIMP zircon ages: Basis for refining the chronostratigraphic classification of the Meso- and Neoproterozoic strata in North China old land. Acta Geoscientica Sinica, 29(3): 366-376 (in Chinese with English abstract)
Gao LZ, Zhang CH, Liu PJ, Ding XZ, Wang ZQ and Zhang YJ. 2009. Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China. Acta Geoscientica Sinica, 30(4): 433-446 (in Chinese with English abstract)
Gao W, Zhang CH, Gao LZ, Shi XY, Liu YM and Song B. 2008. Zircon SHRIMP U-Pb age of rapakivi granite in Miyun, Beijing, China, and its tectono-stratigraphic implications. Geological Bulletin of China, 27(6): 793-798 (in Chinese with English abstract)
Geng YS, Liu FL and Yang CH. 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication. Acta Geologica Sinica, 80(6): 819-833
Guo JH, Sun M and Zhai MG. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. In: Wilde SA and Zhao GC (eds.). Late Archean to Paleoproterozoic Evolution of the North China Craton. J. Asian Earth Sci., 24(5): 529-542
He ZJ, Niu BG, Zhang XY, Zhao L and Liu RY. 2011. Discovery of the paleo-weathered mantle of the rapakivi granite covered by the Proterozoic Changzhougou Formation in the Miyun area, Beijing and their detrital zircon dating. Geological Bulletin of China, 30(5): 798-802 (in Chinese with English abstract)
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69
Kröner A, Wilde SA, Li JH and Wang KY. 2005a. Age and evolution of a Late Archean to Early Palaeozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. In: Wilde SA and Zhao GC (eds.). Late Archean to Paleoproterozoic Evolution of the North China Craton. J. Asian Earth Sci., 24: 577-595
Kröner A, Wilde SA, O’Brien PJ, Li JH, Passchier CW, Walte NP and Liu DY. 2005b. Field relationships, geochemistry, zircon ages and evolution of a Late Archean to Paleoproterozoic lower crustal section in the Hengshan Terrain of Northern China. Acta Geol. Sin., 79: 605-629
Kröner A, Wilde SA, Zhao GC, O’Brien PJ, Sun M, Liu DY, Wan YS, Liu SW and Guo JH. 2006. Zircon geochronology and metamorphic evolution of mac dykes in the Hengshan Complex of northern China: Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Research, 146(1-2): 45-67
Kusky TM and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397
Kusky TM. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research, 20(1): 26-35
Li HK, Su WB, Zhou HY, Geng JZ, Xiang ZQ, Cui YR, Liu WC and Lu SN. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670Ma: Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing. Earth Science Frontiers, 18(3): 108-120 (in Chinese with English abstract)
Li HM, Chen YC, Li LX and Wang DH. 2012. Mineralization Regularity of Iron Deposits in China. Beijing: Geological Publishing House, 1-246 (in Chinese)
Li JH and Kusky TM. 2007. A Late Archean foreland fold and thrust belt in the North China Craton: Implications for early collisional tectonics. Gondwana Research, 12(1-2): 47-66
Li TS, Zhai MG, Peng P, Chen L and Guo JH. 2010. Ca. 2.5 billion year old coeval ultramafic-mafic and syenitic dykes in eastern Hebei: Implications for cratonization of the North China Craton. Precambrian Research, 180: 143-155
Li YH, Zheng ZJ, Wu JS and Shang LP. 2011. Metamorphic chronology of the BIF in Malanzhuang of eastern Hebei Province and its geological implications. Mineral Deposits, 30(4): 645-653 (in Chinese with English abstract)
Li YH, Hou KJ, Wan DF and Zhang ZJ. 2012. A compare geochemistry study for Algoma- and Superior-type banded iron formations. Acta Petrologica Sinica, 28(11): 3513-3519 (in Chinese with English abstract)
Liu CH, Liu FL and Zhao GC. 2012. The Paleoproterozoic basin evolution in the Trans-North China Orogen, North China Craton. Acta Petrologica Sinica, 28(9): 2770-2784 (in Chinese with English abstract)
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571
Lu SN and Li HM. 1991. A Precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation Changcheng System in Jixian. Bulletin of the Chinese Academy of Geological Sciences, 22(1): 137-146 (in Chinese with English abstract)
Lu SN, Yang CL, Li HK and Li HM. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131
Lu SN, Yang CL, Li HK and Chen ZH. 2002. North China continent and Columbia supercontinent. Earth Science Frontiers, 9(4): 225-233 (in Chinese with English abstract)
Lu SN, Zhao GC, Wang HM and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160(1-2): 77-93
Nasdala L, Hofmeister W, Norberg N, Martinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Götze J, Häger T, Kröner A and Valley JW. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265
Peng P and Zhai MG. 2002. Two major Precambrian geological events of North China Block (NCB): Characteristics and property. Advance in Earth Sciences, 17(6): 818-825 (in Chinese with English abstract)
Peng P, Zhai MG, Zhang HF, Zhao TP and Ni ZY. 2004. Geochemistry and geological significance of the 1.8Ga mafic dyke swarms in the North China Craton: An example from the juncture of Shanxi, Hebei and Inner Mongolia. Acta Petrologica Sinica, 20(3): 439-456 (in Chinese with English abstract)
Peng P, Zhai MG, Zhang HF and Guo JH. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mac dikes. International Geology Review, 47(5): 492-508
Peng P, Zhai MG, Guo JH, Kusky T and Zhao TP. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78Ga mafic dykes in the central North China Craton. Gondwana Research, 12(1-2): 29-46
Polat A, Herzberg C, Münker C, Rodgers R, Kusky T, Li JH, Fryer B and Dalaney J. 2006. Geochemical and petrological evidence for a suprasubduction zone origin of Neoarchean (ca. 2.5Ga) peridotites, central orogenic belt, North China craton. Geological Society of America Bulletin, 118(7-8): 771-784
Rämö OT, Haapala I, Vaasjoki M, Yu JH and Fu HQ. 1995. 1700Ma Shachang complex, Northeast China: Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology, 23(9): 815-818
Ren KX, Yan GH, Cai JH, Mu BL, Li FT, Wang YB and Chu ZY. 2006. Geochronoloy and geological implication of the Pale-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton. Acta Petrologica Sinica, 22(2): 377-386 (in Chinese with English abstract)
Rogers JJW and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22
Santosh M, Sajeev K and Li JH. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly: Evidence from North China Craton. Gondwana Research, 10(3-4): 256-266
Shen BF, Zhai AM, Chen WL and Yang CL. 2006. The Precambrian Mineralization of China. Beijing: Geological Publishing House (in Chinese)
Shen BF. 2012. Geological characters and resource prospect of the BIF type iron ore deposits in China. Acta Geologica Sinica, 86(9): 1376-1395(in Chinese with English abstract)
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L and Norberg N. 2008. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35
Sun HY, Gao LZ, Bao C, Chen YL and Liu DY. 2013. SHRIMP zircon U-Pb of Mesoproterozoic Chuanlinggou formation from Kuancheng County in Hebei Province and its geological implication. Acta Geologica Sinica, 87(4): 591-596 (in Chinese with English abstract)
Sun J, Du WH, Wang DZ, Li J, Xu GX and Han YC. 2009. Geological characteristics and genesis of the Heishan V-Ti magnetite deposit in Damiao, Chengde Hebei Province. Acta Geologica Sinica, 83(9): 1344-1364(in Chinese with English abstract)
Wan YS, Dong CY, Xie HQ, Wang SJ, Song CM, Xu ZY, Wang SY, Zhou HY, Ma MZ and Liu DY. 2012. Formation ages of early Precambrian BIFs in the North China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Snica, 86(9): 1447-1478(in Chinese with English abstract)
Wang HC, Lu SN, Zhao FQ and Zhong CT. 2005. The paleoproterozoic geological records in North China craton and their tectonic significance. Geological Survey and Research, 28(3): 129-143 (in Chinese with English abstract)
Wang HC, Yu HF, Miao PS, Zhao FQ and Xiang ZQ. 2011. Precambrian research in China: New advances and perspectives. Geological Survey and Research, 34(4): 241-252, 312(in Chinese with English abstract)
Wilde SA, Zhao GC and Sun M. 2002. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga: Some speculations on its position within a global Paleoproterozoic supercontenent. Gondwana Research, 5: 85-94
Wilde SA and Zhao GC. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton. J. Asian Earth Sci., 24: 519-522
Windley BF. 1995. The Evolving Continents. 3rdEdition. New York: John Willy and Sons
Wu CH, Li HM, Zhong CT and Zuo YC. 2000. TIMS U-Pb single zircon ages for the orthogneiss and paragneiss of Fuping Complex. Progress of Precambrian Research, 23: 130-139
Wu CH. 2007. Meta-Sedimentary rocks and tectonic division of the North China Craton. Geological Journal of China Universities, 13(3): 442-457(in Chinese with English abstract)
Wu JS, Geng YS, Shen QH, Wang YS, Liu DY and Song B. 1998. Archean Geology Characteristics and Tectonic Evolution of Sino-Korea Paleo-continent. Beijing: Geological Publishing House, 1-104 (in Chinese with English abstract)
Yang DB, Xu WL, Xu YG, Wang QH, Pei FP and Wang F. 2012. U-Pb ages and Hf isotope data from detrital zircons in the Neoproterozoic sandstones of northern Jiangsu and southern Liaoning provinces, China: Implications for the Late Precambrian evolution of the southeastern North China Craton. Precambrian Research, 216-219: 162-176
Yang JH, Wu FY, Liu XM and Xie LW. 2005. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing, China. Acta Petrologica Sinica, 21(6): 1633-1644 (in Chinese with English abstract)
Ye DH, Yang QW and Xing JR. 1996. The Damiao anorthosite and vanadic-titano magnetite and apatite deposits associated with the anorthosite in Chengde, Hebei. In: Field Trip Guide T216. 30thInternational Geological Congress. Beijing, China, 1996
Yu JH, Fu HQ, Haapala I, Ramo TO, Vaasjoki M and Mortensen JK. 1996. A 1.70Ga anorogenic rapakivi granite suite in the northern part of North China Craton. Journal of Geology and Mineral Research of North China, 11(3): 341-350 (in English with Chinese abstract)
Zhai MG, Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic. Science in China (Series D), 43(Suppl.): 219-232
Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China Craton: A review. Precambrian Research, 122(1-4): 183-199
Zhai MG. 2004. 2.1~1.7Ga geological event group and its geotectonic significance. Acta Petrologica Sinica, 20(6): 1343-1354(in Chinese with English abstract)
Zhai MG and Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665-2682 (in Chinese with English abstract)
Zhai MG. 2008. Lower crust and lithospheric mantle beneath the North China Craton before the Mesozoic lithospheric disruption. Acta Petrologica Sinica, 24(10): 2185-2204(in Chinese with English abstract)
Zhai MG. 2010. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36(in Chinese with English abstract)
Zhai MG and Santosh M. 2011. The early Precambrian odyssey of the North China craton: A synoptic overview. Gondwana Research, 20(1): 6-25
Zhai MG. 2012. Evolution of the North China Craton and early plate tectonics. Acta Geologica Sinica, 86(9): 1135-1149(in Chinese with English abstract)
Zhang C, Hou GT and Qian XL. 1994. Magetic gabric evidence of the style of emplacement of late Precambrian mafic dyke swarms in the Lvliang-northern Shanxi region, North China. Geological Review, 40(2): 245-251(in Chinese with English abstract)
Zhang LC, Zhai MG, Wan YS, Guo JH, Dai YP, Wang CL and Liu L. 2012. Study of the Precambrian BIF-iron deposits in the North China Craton: Progresses and questions. Acta Petrologica Sinica, 28(11): 3431-3445(in Chinese with English abstract)
Zhang SH, Liu SW, Zhao Y, Yang JH, Song B and Liu XM. 2007. The 1.75~1.68Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Research, 155(3-4): 287-312
Zhang SH, Zhao Y, Ye H, Hu JM and Wu F. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi formations of the Changcheng System in the Yan-Liao area in the northern North China Craton. Acta Petrologica Sinica, 29(7): 2481-2490 (in Chinese with English abstract)
Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural andP-Tpath constraints and tectonic evolution. Precambrian Research, 107(1/2): 45-73
Zhao GC, Wilde SA, Cawood PA and Sun M. 2002a. SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton. American Journal of Science, 302(3): 191-226
Zhao GC, Sun M and Wilde SA. 2003. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China (Series D), 46(1): 23-38
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Science in China (Series D), 136(2): 177-202
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55-76
Zhao TP, Zhou MF, Zhai MG and Xia B. 2002b. Paleoproterozoic rift-related volcanism of the Xiong’er Group, North China Craton: Implications for the breakup of Columbia. International Geology Review, 44(4): 336-351
Zhao TP, Chen FK, Zhai MG and Xia B. 2004. Single zircon U-Pb ages and their geological signicicance of the Damiao anorthosite complex, Hebei Province, China. Acta Petrologica Sinica, 20(3): 685-690 (in Chinese with English abstract)
Zhao YM. 2013. Main genetic types and geological characteristics of iron-rich ore deposits in China. Mineral Deposits, 32(4): 685-704 (in Chinese with English abstract)
Zheng YF and Wu FY. 2009. Growth and reworking of cratonic lithosphere. Chinese Science Bulletin, 54(19): 3347-3353
Zhou YC and Yuan C. 1989. A study on Damiao anorthosite somplex and iron-phosphorus ore based on rare earth elements geochemistry. Journal of Changchun University of Earth Science, 19(1): 10-20(in Chinese with English abstract)
Zhu RX and Zheng TY. 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics. Chinese Science Bulletin, 54(19): 3354-3366
附中文参考文献
白瑾, 黄学光, 戴凤岩, 吴昌华. 1993. 中国前寒武纪地壳演化. 北京: 地质出版社, 65-79
高林志, 张传恒, 尹崇玉, 史晓颖, 王自强, 刘耀明, 刘鹏举, 唐烽, 宋彪. 2008. 华北古陆中、新元古代年代地层框架SHRIMP锆石年龄新依据. 地球学报, 29(3): 366-367
高林志, 张传恒, 刘鹏举, 丁孝忠, 王自强, 张彦杰. 2009. 华北-江南地区中、新元古代地层格架的再认识. 地球学报, 30(4): 433-446
高维, 张传恒, 高林志, 史晓颖, 刘耀明, 宋彪. 2008. 北京密云环斑花岗岩的锆石SHRIMP U-Pb年龄及其构造意义. 地质通报, 27(6): 793-798
和政军, 牛宝贵, 张新元, 赵磊, 刘仁燕. 2011. 北京密云元古宙常州沟组之下环斑花岗岩古风化壳岩石的发现及其碎屑锆石年龄. 地质通报, 30(5): 798-802
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492
李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670Ma: 来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束. 地学前缘, 18(3): 108-120
李厚民, 陈毓川, 李立兴, 王登红. 2012. 中国铁矿成矿规律. 北京: 地质出版社. 1-246
李延河, 张增杰, 伍家善, 尚龙平. 2011. 冀东马兰庄条带状硅铁建造的变质时代及地质意义. 矿床地质, 30(4): 645-653
李延河, 侯可军, 万德芳, 张增杰. 2012. Algoma 型和 Superior 型硅铁建造地球化学对比研究. 岩石学报, 28(11): 3513-3519
刘超辉, 刘福来, 赵国春. 2012. 华北克拉通中部造山带早元古代盆地演化. 岩石学报, 28(9): 2770-2784
陆松年, 李惠民. 1991. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年. 中国地质科学院院报, 22(1): 137-146
陆松年, 杨春亮, 李怀坤, 陈志宏. 2002. 华北古大陆与哥伦比亚超大陆. 地学前缘, 9(4): 225-233
彭澎, 翟明国. 2002. 华北陆块前寒武纪两次重大地质事件的特征和性质. 地球科学进展, 17(6): 818-825
彭澎, 翟明国, 张华锋, 赵太平, 倪志耀. 2004. 华北克拉通1.8Ga镁铁质岩墙群的地球化学特征及其地质意义: 以晋冀蒙交界地区为例. 岩石学报, 20(3): 439-456
任康绪, 阎国翰, 蔡剑辉, 牟保磊, 李凤棠, 王彦斌, 储著银. 2006. 华北克拉通北部地区古-中元古代富碱侵入岩年代学及意义. 岩石学报, 22(2): 377-386
沈保丰, 翟安民, 陈文明, 杨春亮. 2006. 中国前寒武纪成矿作用. 北京: 地质出版社
沈保丰. 2012. 中国BIF型铁矿床地质特征和资源远景. 地质学报, 86(9): 1376-1395
孙会一, 高林志, 包创, 陈岳龙, 刘敦一. 2013. 河北宽城中元古代串岭沟组凝灰岩SHRIMP锆石U-Pb年龄及其地质意义. 地质学报, 87(4): 591-596
孙静, 杜维河, 王德忠, 李健, 徐国新, 韩玉丑. 2009. 河北承德大庙黑山钒钛磁体矿床地质特征与成因探讨. 地质学报, 83(9): 1344-1364
万渝生, 董春艳, 颉颃强, 王世进, 宋明春, 徐仲元, 王世炎, 周红英, 马铭株, 刘敦一. 2012. 华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年. 地质学报, 86(9): 1447-1478
王惠初, 陆松年, 赵风清, 钟长汀. 2005. 华北克拉通古元古代地质记录及其构造意义. 地质调查与研究, 28(3): 129-143
王惠初, 于海峰, 苗培森, 赵凤清, 相振群. 2011. 前寒武纪地质学研究进展与前景. 地质调查与研究, 34(4): 241-252, 312
吴昌华. 2007. 华北克拉通的变质沉积岩及其克拉通的构造划分. 高校地质学报, 13(3): 442-457
伍家善, 耿元生, 沈其韩, 万渝声, 刘敦一, 宋彪. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社, 1-104
杨进辉, 吴福元, 柳小明, 谢烈文. 2005. 北京密云环斑花岗岩锆石U-Pb年龄和Hf同位素及其地质意义. 岩石学报, 21(6): 1633-1644
郁建华, 付会芹, Haapala I, Ramo TO, Vaasjoki M, Mortensen JK. 1996. 华北克拉通北部1.70Ga非造山环斑花岗岩套. 华北地质矿产杂志, 11(3): 341-350
翟明国. 2004. 华北克拉通2.1~1.7Ga地质事件群的分解和构造意义探讨. 岩石学报, 20(6): 1343-1354
翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665-2682
翟明国. 2008. 华北克拉通中生代破坏前的岩石圈地幔与下地壳. 岩石学报, 24(10): 2185-2204
翟明国. 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24-36
翟明国. 2012. 华北克拉通的形成以及早期板块构造. 地质学报, 86(9): 1135-1149
张臣, 侯贵廷, 钱祥麟. 1994. 吕梁-晋北地区晚前寒武纪镁铁质岩墙群侵位方式的磁阻构证据. 地质论评, 40(3): 245-251
张连昌, 翟明国, 万渝生, 郭敬辉, 代堰锫, 王长乐, 刘利华. 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431-3445
张拴宏, 赵越, 叶浩, 胡健民, 吴飞. 2013. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约. 岩石学报, 29(7): 2481-2490
赵国春, 孙敏, Wilde SA. 2002. 华北克拉通基底构造单元特征及早元古代拼合. 中国科学(D辑), 32(7): 538-549
赵太平, 陈福坤, 翟明国, 夏斌. 2004. 河北大庙斜长岩杂岩体锆石U-Pb 年龄及其地质意义. 岩石学报, 20(3): 685-690
赵一鸣. 2013. 中国主要富铁矿床类型及地质意义. 矿床地质, 32(4): 685-704
郑永飞, 吴福元. 2009. 克拉通岩石圈的生长和再造. 科学通报, 54(14): 1945-1949
周永昶, 袁朝. 1989. 大庙斜长岩杂岩体及铁磷矿的稀土元素地球化学研究. 长春地质学院学报, 19(1): 10-20
朱日祥, 郑天愉. 2009. 华北克拉通破坏机制与古元古代板块构造体系. 科学通报, 54(14): 1950-1961