北祁连西段小柳沟矿区花岗质岩石锆石U-Pb年代学、地球化学及成因研究**

2014-03-14 06:47赵辛敏张作衡刘敏李育森郭少丰ZHAOXinMinZHANGZuoHengLIUMinLIYuSenandGUOShaoFeng
岩石学报 2014年1期
关键词:祁连花岗闪长岩

赵辛敏 张作衡 刘敏 李育森 郭少丰ZHAO XinMin, ZHANG ZuoHeng*, LIU Min, LI YuSen and GUO ShaoFeng

1. 中国地质大学地球科学与资源学院,北京 1000832. 中国地质科学院矿产资源研究所,国土资源部成矿作用与资源评价重点实验室,北京 1000373. 甘肃新洲矿业有限公司,张掖 7344004. 中国地质调查局发展研究中心,北京 100037 1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China2. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China3. Gansu Xinzhou Mining Limited Company, Zhangye 734400, China4. Development and Research Center, China Geological Survey, Beijing 100037, China2013-09-01 收稿, 2013-12-07 改回.

北祁连山位于华北板块西南缘,与秦岭、昆仑一起构成了中国大陆内部巨型的中央造山带,是中国大陆板块构造研究的摇篮。作为我国一个典型的加里东造山带,北祁连矿产资源极为丰富,已成为我国有色金属、贵金属等矿产的重要基地,目前发现有塔尔沟大型钨矿床和小柳沟大型钨钼(铜)矿床及一些钨钼矿(矿化)点,显示出该地区孕育钨矿床的良好前景(毛景文等,1998,1999;Maoetal.,2000;张作衡等,1999,2002;周廷贵等,1999;陈毓川等,1999;杨钟堂等,2002;高兆奎和白仲吾,2003;肖朝阳等,2003)。

小柳沟钨钼(铜)矿床位于北祁连西段南缘中元古代镜铁山-朱龙关裂谷带中,是甘肃有色地勘局四队于20世纪90年代中期发现并勘探的大型-特大型钨钼矿(甘肃有色地质勘查局四队,2000*甘肃有色地质勘查局四队. 2000. 甘肃省肃南县小柳沟铜钨矿床地质普查报告)。前人曾在地质特征(张胜业等,2002;安涛和周继强,2002;刘堆富和陈玉峰,2005;白仲吾等,2005;汤静如等,2006;乔立斌,2008)、成岩成矿时代(Maoetal.,1999;贾群子等,2007;高兆奎等,2011)、 地球化学(张作衡等,1999;毛景文等,2003;周宏,2004,周宏等,2004;贾群子等,2007;张自森和林森,2010;高兆奎等,2011)、矿床成因(周廷贵等,1999;窦元杰,1999;陈福等,2007;汪海峰和周继强,2009;陈玉峰等,2010)等方面做了大量研究工作,取得了一些成果,但作为与钨钼成矿密切相关的花岗岩体,由于工程揭露有限,目前研究还较薄弱。小柳沟花岗质岩石主要由二长花岗岩和花岗闪长岩组成,前人对二长花岗岩所采用的定年方法有K-Ar法和U-Pb法,但K-Ar体系的封闭温度较低,易受后期热事件扰动,而锆石U-Pb法前人文中给出的同位素年龄较少,缺乏详细测试过程和锆石内部结构资料,与成矿年龄存在矛盾,且花岗闪长岩的年龄至今未见报道,所以有必要对小柳沟花岗岩成岩年龄进行精确厘定。另外,其地球化学特征还未进行详细的研究,这在一定程度上影响了对其形成机制的进一步研究。本文选择小柳沟花岗质岩石为研究对象,在通过LA-ICP-MS锆石U-Pb年代学确定其精确侵位时代的基础上,通过岩相学、地球化学及锆石原位Hf同位素等方面的综合研究,探讨岩石成因及其与成矿关系。这不仅对研究矿床成因和指导找矿具有理论和现实意义,还可为区域构造演化提供新的资料参考。

1 区域地质概况

北祁连造山带位于秦祁昆巨型多旋回复合造山带中段,夹持于华北板块、塔里木板块和中祁连-柴达木板块之间,呈NW向延伸,长约1200km,宽约100~300km,是一个具有典型沟-弧-盆体系的早古生代造山带(冯益民和吴汉泉,1992,周继强,1997;左国朝和吴汉泉,1997;夏林圻等,1998;张旗等,2003;杜远生等,2004;徐学义等,2008)(图1)。左国朝和吴汉泉(1997)、左国朝等(2002)以宗宾大坂转换断层为界将北祁连造山带分为中、西两部分。

北祁连西段出露的地层有:下元古界的北大河群,为本区最古老的陆壳基底,是一套遭受中压相变质作用的结晶岩系,岩性为云母片岩夹角闪岩和长石石英黑云母片岩。中元古代-新元古代地层依次为朱龙关群、镜铁山群、大柳沟群和白杨沟群。朱龙关群由变质玄武岩、碎屑岩、碳酸盐岩及含铁岩系等组成;镜铁山群主要为陆源碎屑岩夹白云质大理岩与含铁岩系等;大柳沟群主要为碳酸盐岩;白柳沟群主要为厚层砾岩,局部见有中基性火山岩。寒武系主要为砂岩、板岩、灰岩夹凝灰岩。奥陶纪以基性-中基性火山岩为特征,上部出现厚层灰岩。志留系-泥盆系为一套浅海-滨海相碎屑岩。二叠系-侏罗系为浅海相至河流相碎屑岩。白垩纪主要为山间盆地相的碎屑岩(甘肃有色地质勘查局四队, 2000)。

该区断裂构造十分发育,常密集成带分布,区域断裂构造线总体以NWW向为主,构成北祁连西段主体构造格架。次为NEE向和近EW向断裂,多形成走滑断裂构造。

区内岩浆活动强烈,于古元古代、中元古代早期和奥陶纪经历了三次大的基性岩浆侵入-喷发活动,尽管在古元古代有酸性火山岩喷发,西北边缘有海西期花岗岩侵入,但区内绝大多数花岗岩形成于加里东期。

图1 北祁连山地质简图(据李文渊等,2005)1-中新生界;2-晚古生代沉积岩系;3-寒武纪复理石建造;4-奥陶纪火山岩系;5-中寒武-早奥陶世火山岩系;6-前寒武系;7-前加里东期花岗岩类;8-加里东期花岗岩类;9-加里东期后花岗岩类 Fig.1 Geological sketch map of northern Qilian Mountains (after Li et al., 2005)1-Mesozoic-Cenozoic Erathem;2-Late Palaeozoic sediment rocks;3-Cambrian flysch formations;4-Ordovician volcanic rocks;5-Early Ordovician-Middle Cambrian volcanic rocks;6-Precambrian terrances; 7-pre-Caledonian granite;8-Caledonian granite;9-post-Caledonian granite

2 矿床地质及岩相学特征

小柳沟钨钼矿位于甘肃省肃南县祁青乡,矿区东西长3km,南北长4km,面积12km2,以小柳沟-世纪穹窿为中心分布有祁青钼矿、小柳沟钨矿、世纪钨矿、贵山钨矿、祁宝钨矿。其中祁青钼矿位于穹窿构造核部位置,小柳沟钨矿、世纪钨矿、贵山钨矿位于穹窿构造东西两侧,祁宝钨矿床位于矿区北部(图2)。

图2 小柳沟钨钼矿床地质简图(据汤静如等,2006修改)Fig.2 Simplified geologic map of tungsten and molybdenum deposit in Xiaoliugou(modified after Tang et al., 2006)

矿区出露地层为长城系朱龙关群桦树沟组,为一套碳酸盐岩-基性火山岩-碎屑岩建造, 可分为上下两个岩组。下岩组分布于矿区西部,以含铁碎屑岩沉积和缺少火山岩为特征,主要为砂质板岩、石英岩,为含铁复理石建造。上岩组分布在矿区东部,以碎屑岩、火山岩夹碳酸盐岩为特征,主要为绢云绿泥千枚岩、云母角闪片岩、灰岩、玄武岩,为矿区的主要含矿层位,矿区90%以上矿体赋存在该层位中。

矿区地处NW向构造带与NE-NEE向构造带的复合部位,地质构造复杂,前寒武系地层均呈北西向展布,两组不同方向断裂复合成菱形格状构造。矿区内断裂构造十分发育,既有规模大且长期活动的北东向或近南北向断裂,也有隐伏花岗岩侵入导致的放射状、环状断裂或裂隙构造,这些断裂或裂隙又被成矿后北西向或东西向断裂所交切。

矿区地表侵入岩不发育,仅见花岗岩脉、二长花岗岩和少量辉长岩脉,零星分布于矿区的中南部和北部,形态复杂,呈不规则状、透镜状。深部经部分钻孔揭露,发现有隐伏花岗质岩体,在矿区北部侵位高而向南逐渐变低(贾群子等,2007),由于工程揭露有限,岩体的形态和产状尚不十分清楚。从目前资料来看,岩体主要由二长花岗岩和花岗闪长岩组成,花岗闪长岩位于二长花岗岩下方,二者接触界线截然。

小柳沟矿床已探明钨矿体14个、钼、铜矿体各8个,钻孔施工发现隐伏岩体内部的钼矿化,显示出深部具有良好的钼成矿前景。矿床发育斑岩型矿化、矽卡岩型矿化、石英脉型矿化三种矿化类型,三者在空间上分带明显,以二长花岗岩体为中心自下而上发育斑岩型钼(铜)矿化、矽卡岩型钨矿化、石英脉型钨钼(铜)矿化。斑岩型矿化发育在二长花岗岩体内部,辉钼矿呈浸染状、脉状(图3a);矽卡岩型矿化主要发育于二长花岗岩外接触带及其附近,主要为矽卡岩型白钨矿化(图3b);石英脉型矿化受断裂控制,成群成带分布,石英脉中及两侧常见辉钼矿、白钨矿、黄铜矿发育(图3c, d)。

图3 矿化特征及岩石样品显微特征(a)-辉钼矿-石英脉穿插于蚀变二长花岗岩中;(b)-含白钨矿化的矽卡岩;(c)-含白钨矿石英脉;(d)-辉钼矿-黄铜矿-石英脉;(e)-灰白色二长花岗岩;(f)-等粒花岗闪长岩;(g)-斑状花岗闪长岩;(h)-二长花岗岩矿物成分和结构(正交偏光)(i)-斑状花岗闪长岩矿物成分和结构(正交偏光).Kfs-钾长石;Pl-斜长石;Bt-黑云母;Ms-白云母;Qtz-石英Fig.3 Photos of mineralization features, rocks and microphotographs of granites from Xiaoliugou plutons

经过详细的手标本和显微镜观察,小柳沟花岗质岩石的主要岩石特征如下:

二长花岗岩:灰白-肉红色,中细粒结构,局部似斑状结构,块状构造(图3e),主要矿物为斜长石(25%~30%)、钾长石(30%~35%)、石英(25%~30%)、黑云母(1%~3%)、白云母(1%~3%),并含有少量副矿物,榍石、磷灰石、锆石、钛铁矿等。主要矿物特征:石英呈他形粒状,粒径多为1~2mm;斜长石呈半自形-自形板状,粒径一般为1~3mm,多见聚片双晶,偶见卡纳复合双晶,多蚀变为细鳞片状绢云母 (图3h);钾长石呈半自形-他形,粒径多为1~3mm,局部见大颗粒钾长石,可达5~8mm,显示出似斑状结构,常见卡式双晶,多发生泥化;黑云母呈半自形片状, 粒径小者约0.2~0.5mm,大者为1~2mm,浅黄-浅棕色,多色性明显;白云母既有以独立晶体存在的原生白云母,多呈自形-半自形片状,粒径多在0.5~1mm,端面清晰,也有交代斜长石、黑云母生成的次生白云母,常呈细鳞片状产出。

花岗闪长岩根据结构可分为等粒花岗闪长岩和斑状花岗闪长岩,二者之间渐变过渡,有时可见二者交互出现。等粒花岗闪长岩为灰白色,中细粒结构,块状构造(图3f),主要矿物为斜长石(40%~45%),呈半自形-自形板状,粒径1~2mm,可见聚片双晶,局部绢云母化,部分颗粒可见明显的环带结构;钾长石(15%~20%),呈半自形-他形,颗粒多为1~3mm;石英(20%~25%),多呈他形粒状,粒径多为1~2mm;黑云母(5%~8%),呈半自形片状,粒径小者0.5~1mm,大者为1~2mm,浅黄-浅棕色。斑状花岗闪长岩呈似斑状结构(图3g),斑晶约占30%。斑晶矿物为斜长石、石英,大小一般在0.5~1cm,斜长石斑晶常见环带结构(图3i),基质的成分与结构和等粒花岗岩类似。

3 样品及分析方法

本文所用的测试样品是经过手标本和显微镜观察后,挑选无蚀变或蚀变较弱的样品,无污染粉碎至200目,在中国地质科学院国家地质测试中心进行系统的主量元素、微量元素及稀土元素分析。主量元素采用X射线荧光法(XRF)在X荧光光谱仪(3080E)上测定,精度优于2%~5%。微量元素和稀土元素利用电感耦合等离子体质谱法(ICP-MS)在离子质谱仪(X-series)上测试完成,相对标准偏差小于5%。

用于锆石U-Pb年代学测试的二长花岗岩样品采自ZK66-1的480m处,样品蚀变较弱;斑状花岗闪长岩样品采自ZKY-2的582m处,样品较新鲜。经人工破碎后按照常规方法分选锆石,在双目镜下挑选透明、晶形完好的锆石颗粒,粘于环氧树脂表面,固化后打磨抛光至露出一个光洁平面。然后进行透、反射和阴极发光(CL)照像,结合这些图像选择适宜的测试点位及进行合理的数据解释。LA-ICP-MS锆石U-Pb定年测试分析在中国地质科学院矿产资源研究所LA- ICP -MS实验室完成,锆石定年分析所用仪器为Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。激光剥蚀所用斑束直径为25μm,频率为10HZ,能量密度约为2.5J/cm2,以He为载气。激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1为外标,U、Th含量以锆石M127为外标进行校正。测试过程中在每测定5~7个样品前后重复测定两个GJ-1对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度。详细实验测试过程可参见侯可军等(2009)。数据处理采用ICPMSDataCal程序(Liuetal.,2008),普通铅校正采用Andersen(2002)的方法,年龄计算使用Isoplot3.0程序(Ludwig,2003)完成。

锆石U-Pb年龄测试完毕后,同时在中国地质科学院矿产资源研究所同位素实验室进行Hf同位素原位分析,使用仪器为Finnigan Neptune型多接受等离子质谱仪,激光剥蚀系统为Newwave UP213,分析时激光束斑直径为40μm,激光剥蚀时间为27s,测定采用锆石GJ-1和TEM做外标,176Hf/177Hf比值分别为0.282013±19(2σ)(Elhlouetal.,2006)和0.282680±31(2σ)(Wuetal.,2006a)。仪器的运行条件、详细的分析流程、数据校正方法及锆石标准参考值详见侯可军等(2007)的文章。

4 分析结果

4.1 锆石LA-ICP-MS定年

本文对二长花岗岩(XLG-32)和斑状花岗闪长岩(XLG-17)中的锆石进行了U-Pb同位素分析,其结果见表1。

二长花岗岩(XLG-32)和斑状花岗闪长岩(XLG-17)样品中锆石以自形粒状为主,颗粒较大,粒径多为60~150μm。阴极发光图像(图4)揭示大部分锆石具有清晰的岩浆韵律环带。二长花岗岩(XLG-32)中锆石的U含量为95×10-6~1269×10-6,Th含量为40×10-6~430×10-6,Th/U比值介于0.13~0.84,平均0.42;斑状花岗闪长岩(XLG-17)中锆石的U含量为78×10-6~7684×10-6,Th含量为52×10-6~2246×10-6,Th/U比值介于0.13~1.35,平均0.68,显示出岩浆锆石的特点(Hoskin and Black,2000)。

图4 小柳沟二长花岗岩(a)和花岗闪长岩(b)的锆石阴极发光图像Fig.4 Zircon CL images of the monzogranite (a) and granodiorite (b) from Xiaoliugou plutons

图5 小柳沟二长花岗岩(a)和花岗闪长岩(b)的锆石U-Pb谐和图Fig.5 Zircon U-Pb concordia diagram for the monzogranite (a) and granodiorite (b) from Xiaoliugou plutons

二长花岗岩样品(XLG-32)共测定20个点,4、5、13号点的测试异常已删去,剩余17个分析点中有10个测点均投影于谐和线上或谐和线附近,具有非常一致的年龄,变化于449.3±2.8Ma~462.1±2.6Ma, 其206Pb/238U加权平均年龄为454.0±2.0Ma,MSWD=0.62(图5a),代表了岩浆结晶年龄,表明其形成于晚奥陶世。斑状花岗闪长岩(XLG-17)共测定30个点,9、13、15、17号点的测试异常已删去,剩余26个分析点中有20个测点均投影于谐和线上或谐和线附近,代表了岩浆结晶时间,变化于410.0±4.6Ma~425.8±6.7Ma, 其206Pb/238U加权平均年龄为417.7±1.7Ma,MSWD=0.98(图5b),表明其形成于晚志留世。

图6 小柳沟花岗质岩石的K2O-SiO2图解(a, 据Rickwood,1989)和A/CNK-A/NK图解(b,据Peccerillo and Taylor, 1976) Fig.6 K2O-SiO2(a, after Rickwood, 1989) and A/CNK-A/NK (b, after Peccerillo and Taylor, 1976) diagram of the granites from Xiaoliugou Plutons

另外,二长花岗岩(XLG-32)的7、12测点206Pb/238U年龄分别为258.0±2.4Ma和279.0 ±1.5Ma,CL图像(图4a)显示分析点位于岩浆环带与热液边的交界处,可能反映混合年龄。斑状花岗闪长岩(XLG-17)的3号测点206Pb/238U年龄为2438.7±12.8Ma,CL图像(图4b)显示该锆石颜色发亮,可能是来自区内古太古代北大河群陆壳基底的继承锆石。二长花岗岩2、9、11、16测点和斑状花岗闪长岩6、16、18、27、30测点的206Pb/238U年龄分别为386.3±2.3Ma、364.3±2.3Ma、346.0±2.1Ma、183.5±1.2Ma和352.1±3.1Ma、161.0±1.6Ma、380.9±10.1Ma、369.9±3.2Ma、393.5±3.5Ma,CL图像(图4a, b)显示锆石颗粒边部有无分带或弱分带的暗边,可能受到后期热液蚀变的影响,这些测点均位于锆石颜色发黑部位,使获得的年龄值偏低,代表后期岩浆热事件的年龄。

4.2 地球化学特征

4.2.1 主量元素

小柳沟二长花岗岩的SiO2含量在75.57%~76.97%之间(表2),平均76.33%,Al2O3含量为12.09%~13.48%,K2O+Na2O含量介于8.04%~8.58%,平均为8.21%,K2O/Na2O=1.06~2.53,平均为1.94,铝饱和指数(A/CNK)介于0.96~1.09,分异指数DI=92.75~95.50,平均为93.45。花岗闪长岩的SiO2含量为65.52%~73.84%,平均71.49%,Al2O3含量略高,介于13.56%~17.44%之间,K2O+ Na2O含量介于6.71%~10.74%,平均为8.1%,K2O/Na2O=0.83~1.45,平均为1.1,铝饱和指数(A/CNK)介于1.03~1.17,分异指数DI=84.35~90.82,平均为87.48。二者在K2O-SiO2图解上(图6a)基本落在高钾钙碱性系列区域。在A/NK-A/CNK图解上(图6b),绝大多数落在过铝质和强过铝质分界线附近。总之,小柳沟花岗质岩石具有高硅富碱特点,属于过铝质高钾钙碱性系列,但两者相比,二长花岗岩比花岗闪长岩更富硅、富碱、铝稍低,经历了更高的分异演化。

4.2.2 微量元素

小柳沟二长花岗岩和花岗闪长岩在原始地幔标准化微量元素蛛网图上的分布型式明显不同(图7a, c)。二长花岗岩强烈富集大离子亲石元素Rb、Th、U、K及Pb元素,而Ba、Sr、Nb、P、Ti明显亏损,为强烈的负Eu异常。放射性热元素U(22.1×10-6~30.2×10-6)和Th(9.74×10-6~19.2×10-6)含量虽低于千里山花岗岩(毛景文等,1995a,b),但按照Darnleyetal.(1995)的定义,U和Th分别达到8×10-6或10×10-6,该花岗岩依然为高热(HHP)花岗岩。

花岗闪长岩相对富集Rb、Th、U、Pb,Ti明显亏损,相对亏损Ba、Sr、Nb、P,其原始地幔标准化微量元素蛛网图的分布型式(图7c)与北祁连西段形成于加里东期碰撞环境的金佛寺第一期岩体十分类似(刘晓煌等,2009)。

4.2.3 稀土元素

小柳沟二长花岗岩的稀土总量(ΣREE)为44.08×10-6~84.60×10-6,平均65.48×10-6。LREE/HREE=2.02~3.26,(La/Yb)N=1.32~2.7,显示轻、重稀土元素分馏作用不明显,略微富集轻稀土元素。(La/Sm)N=1.88~2.25,(Gd/Yb)N=0.66~1.09,表明轻稀土分馏相对明显,而重稀土分馏不显著。在稀土元素球粒陨石标准化图解(图7b)上,二长花岗岩呈“V”型谷状,显示强烈的铕负异常(δEu为0.08~0.19),显示出M型四分组效应的一些特征,如此强烈的负铕异常反映了形成它的花岗质熔体经历了高度的分离结晶作用,属于高演化岩浆体系,而高演化岩浆体系中岩浆与富挥发份流体相强烈相互作用可能是形成稀土四分组效应的控制因素(赵振华等,1992;Bau,1996;Irber,1999;Jahnetal.,2001)。

与二长花岗岩相比,花岗闪长岩稀土总量(ΣREE)较高(114.7×10-6~218.9×10-6),平均138.8×10-6。LREE/HREE=9.11~14.96,(La/Yb)N为10.74~22.61,显示轻、重稀土元素分馏作用较明显,较富集轻稀土元素。(La/Sm)N=4.33~5.63,(Gd/Yb)N=1.73~2.68,表明轻稀土较重稀土分馏明显。在稀土元素球粒陨石标准化图解(图7d)上,各曲线呈现相似右倾型,轻稀土较陡,重稀土较平缓。具有弱的铕异常(δEu为0.44~0.64)。

4.3 锆石Hf同位素特征

Hf同位素分析结果显示,大部分锆石的176Lu/177Hf值小于0.002(表3),表明锆石在形成后具有较低的放射性成因Hf积累,因而可以用初始176Hf/177Hf比值代表锆石形成时的176Hf/177Hf比值。考虑到二长花岗岩和花岗闪长岩的fLu/Hf值介于-0.97~-0.93和-0.97~-0.91,明显小于镁铁质地壳的fLu/Hf值(-0.34,Amelinetal.,2000)和硅铝质地壳的fLu/Hf值(-0.72,Vervoortetal.,1996),故二阶段模式年龄更能反映其源区物质从亏损地幔被抽取的时间(或其源区物质在地壳的平均存留年龄)。二长花岗岩初始176Hf/177Hf比值介于0.282385~0.282622,εHf(t)为-4.45~4.04,二阶段模式年龄(tDM2)为1176~1714Ma;花岗闪长岩初始176Hf/177Hf比值介于0.282406~0.282653,εHf(t)为-4.18~4.43,二阶段模式年龄(tDM2)为1124~1670Ma。

表3小柳沟花岗质岩石的锆石Hf同位素分析结果

Table 3 Zircon Hf isotope data of the Xiaoliugou granitoids

测点号176Yb/177Hf176Lu/177Hf176Hf/177Hf2σ176Hf/177HfiεHf(0)εHf(t)tDM1(Ma)tDM2(Ma)fLu/HfXLG-32-10.0763750.0021700.2825090.0000220.282491-9.300.0410841430-0.93XLG-32-30.0658300.0018560.2825890.0000230.282573-6.482.959611245-0.94XLG-32-60.0344480.0011420.2825520.0000220.282543-7.771.889941314-0.97XLG-32-80.0834670.0024510.2823850.0000510.282364-13.70-4.4512741714-0.93XLG-32-100.0721200.0021450.2826220.0000250.282604-5.314.049201176-0.94XLG-32-140.0460670.0015380.2824810.0000220.282468-10.28-0.7511051480-0.95XLG-32-150.0508360.0015350.2826050.0000240.282592-5.923.629301203-0.95XLG-32-180.0821080.0024350.2825010.0000270.282480-9.58-0.3211041453-0.93XLG-32-190.0541670.0015790.2825360.0000200.282522-8.351.1710291359-0.95XLG-32-200.0512530.0016510.2824960.0000220.282482-9.77-0.2710881450-0.95XLG-17-10.0835660.0017280.2825740.0000270.282560-7.011.709791297-0.95XLG-17-20.0735660.0016320.2825390.0000260.282527-8.220.5210251372-0.95XLG-17-40.0655060.0014770.2825490.0000250.282538-7.880.9010071348-0.96XLG-17-50.1324080.0028290.2826090.0000270.282587-5.752.669561236-0.91XLG-17-70.1408740.0028970.2825530.0000270.282530-7.760.6410421365-0.91XLG-17-80.0799410.0020630.2826530.0000280.282637-4.194.438721124-0.94XLG-17-100.0657410.0015230.2824820.0000210.282470-10.25-1.4811041499-0.95XLG-17-110.0648980.0014560.2825050.0000280.282494-9.43-0.6410691446-0.96XLG-17-120.1179210.0023490.2825560.0000280.282538-7.630.9110211347-0.93XLG-17-140.0724010.0014850.2824840.0000260.282472-10.20-1.4211011495-0.96XLG-17-190.0667890.0014880.2824060.0000280.282394-12.95-4.1812111670-0.96XLG-17-200.0495670.0010140.2824230.0000310.282415-12.35-3.4411721623-0.97XLG-17-210.0380290.0008680.2825090.0000260.282502-9.30-0.3410471427-0.97XLG-17-220.0713300.0015380.2825170.0000210.282505-9.03-0.2710551422-0.95XLG-17-230.0358620.0008380.2825660.0000320.282559-7.301.669671300-0.97XLG-17-280.0510380.0010750.2824780.0000250.282469-10.41-1.5110971501-0.97XLG-17-290.0496180.0010900.2825210.0000250.282513-8.870.0210361404-0.97

注:εHf(t)={[(176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)]/[(176Hf /177Hf)CHUR,0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10000;tDM1=1/λ×ln{1+[(176Hf/177Hf)s-(176Hf /177Hf)DM]/[(176Lu/177Hf)s-(176Lu/177Hf)DM]};tDM2=1 /λ×ln{1+[(176Hf /177Hf)s,t-(176Hf/177Hf)DM,t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t. 上述(176Hf /177Hf)CHUR,0=0.282772,(176Lu/177Hf)CHUR=0.0332,(176Hf /177Hf)DM=0.28325,(176Lu/177Hf)DM=0.0384 (Blichert-Toftetal.,1997;Griffinetal.,2000).t=crystallization age of zircon. λ=1.867×10-11a-1(Soderlundetal.,2004). (176Lu/177Hf)C=0.015 (Amelinetal.,1999)

图7 小柳沟二长花岗岩和花岗闪长岩微量元素原始地幔标准化蛛网图(a、c)及稀土元素球粒陨石标准化配分曲线图(b、d)(标准化值据Sun and McDonough,1989)Fig.7 Primitive mantle-normalized trace element patterns (a, c) and chondrite-normalized REE patterns diagrams (b, d) of granites from Xiaoliugou plutons (normalization values after Sun and McDonough, 1989)

5 讨论

5.1 花岗岩形成时代及其与成矿关系

过去祁连地区的工作多围绕火山成矿作用进行,而对花岗岩有关的成岩成矿作用研究较少,主要表现为许多与成矿有关的岩体缺乏精确的年代学数据。前人对小柳沟隐伏二长花岗岩所采用的定年方法主要为K-Ar法(186.39±3.13Ma)和锆石U-Pb法(230±26Ma)(贾群子等,2007),由于K-Ar体系的抗扰动性差,加之封闭温度很低(约200±50℃,郑永飞等,1997),使得定年结果常低于岩体的实际年龄,而花岗闪长岩的年龄至今仍未见报道。本次采用LA-ICP-MS锆石U-Pb定年获得的小柳沟二长花岗岩和花岗闪长岩形成时代分别为454.0±2.0Ma和417.7±1.7Ma,属于加里东期岩浆作用的产物。从祁连地区现有的年代学数据来看,除少数花岗岩为元古宙外,其他都集中在加里东期,如野牛滩岩体锆石U-Pb年龄459.6±2.5Ma(毛景文等,2000);窑沟岩体和牛心山岩体锆石U-Pb年龄分别为463.2±4.7Ma和476.7±6.6Ma(吴才来等,2006);车路沟岩体锆石U-Pb年龄445.6±3.2Ma(贾群子等,2007);桦树沟闪长玢岩锆石U-Pb年龄421±24Ma(张兰英等,2008);金佛寺岩体(第Ⅰ、Ⅱ期岩体Rb-Sr年龄分别为419.87±0.4Ma和403.7±0.08Ma,张德全等,1995;第Ⅰ、Ⅱ期岩体Rb-Sr年龄分别为426.5Ma和389.6Ma,Sm-Nd年龄分别为421.9Ma和391.3Ma,刘晓煌等,2009)。有意义的是,二长花岗岩和花岗闪长岩的测年工作均获得了海西期和燕山期的年代学信息,年龄范围分别为346.0±2.1Ma~393.5±3.5Ma和161.0±1.6Ma~183.5±1.2Ma, 印证了前人关于北祁连西段存在海西期、燕山期岩浆活动的报道(毛景文等,2000;贾群子等,2007)。小柳沟花岗质岩石的LA-ICP-MS锆石U-Pb定年结果表明,二长花岗岩和花岗闪长岩侵位时代为加里东中期和晚期,并于海西期和燕山早期经历了岩浆热事件的改造。

世界上大多数晚古生代钨矿床分布在中亚、中欧和澳大利亚(Sawkins,1990;Ermolov,2000;Trunilina,1994),中生代钨矿床主要分布于我国华南、俄罗斯远东地区和美国西部(徐克勤等,1982;Kremenetsky,1994),且绝大多数钨矿床都与花岗质岩体的晚阶段分异演化产物具有密切关系(Sawkins,1990;Ermolov,2000;Trunilina,1994)。而小柳沟钨钼矿虽然属于罕见的早古生代钨矿床,但它也显示出与花岗质岩体的密切关系。在空间上,矿体主要产在二长花岗岩内及其与围岩的外接触带;在时间上,Maoetal.(1999)对石英-硫化物脉中辉钼矿Re-Os定年,获得其模式年龄为436±12Ma~496±32Ma,等时线年龄462±13Ma。高兆奎等(2011)对Maoetal.(1999)所报道的辉钼矿Re-Os年龄按照新的衰变常数进行计算,获得新的模式年龄428.7~488.3Ma,等时线年龄为454.5Ma,与本次获得的二长花岗岩锆石U- Pb年龄454.0±2Ma十分接近,暗示成矿与二长花岗岩关系密切。

图8 小柳沟花岗质岩石的SiO2-P2O5 (a)和SiO2-Pb (b)图解(据Chappell and White,1992) Fig.8 SiO2-P2O5 (a) and SiO2-Pb (b) diagrams of the granites from Xiaoliugou Plutons(after Chappell and White,1992)

研究表明,在氧化和还原花岗岩分异作用过程中,W都表现为不相容,钨矿既可与I型花岗岩有关,如北美科迪勒拉(Newberry,1982; Newberry and Swanson,1986;Keithetal.,1985),又可与S型花岗岩有关,如华南地区(莫柱孙等,1980),这取决于W的地球化学特征,强烈分异演化是其成矿最关键的因素(毛景文和宋叔和,1988)。同样,Mo为不相容元素,岩浆演化导致Mo在岩浆结晶的晚期富集(Candela and Holland,1986),芮宗瑶等(1984)曾对SiO2与斑岩型矿床矿化类型作过统计分析,随着SiO2和分异指数的增大,矿化类型依次更替顺序为:铜金型→多金属型→铜或铜钼型→钼型。如前所述,小柳沟二长花岗岩经历了高度演化,具备形成钨钼矿的条件。一般花岗岩的钨丰度为1×10-6~2.5×10-6,但在高分异的花岗岩中如华南燕山期许多花岗小岩株,钨含量往往超过10×10-6,并常在时空分布上与钨矿床密切相关。本次测试显示小柳沟二长花岗岩的W、Mo、Cu元素含量较高(W平均为10.18×10-6,Mo平均为213.8 ×10-6, Cu平均为110.7×10-6),可为成矿提供物质来源,而花岗闪长岩W、Mo、Cu元素含量较低(W平均为1.72×10-6,Mo平均为3.47×10-6,Cu平均为8.55×10-6)。由此可见,小柳沟钨钼矿床应与早期的二长花岗岩关系密切。

5.2 岩石成因

5.2.1 岩石成因类型

花岗岩成因类型的判定是花岗岩研究最重要的基础问题。目前ISAM型方案是最常用的花岗岩成因分类方案,其中M型较为少见,因此自然界中花岗岩的成因类型主要为I型、S型和A型。不同学者曾从不同角度提出过多种判别方法(Chappell and White,1974,2001;Whalenetal.,1987;Chappell,1999;Frost and Frost,2011),如早期研究提出以含铝指数1.1作为I型和S型的分界(Chappell and White,1974),此外,一系列地球化学图解(Whalenetal.,1987;Sylvester,1989;Eby,1990)在判别这三类花岗岩中也得到广泛应用,但是对于经历高程度分异的花岗岩,由于其矿物组成和化学组成都趋近于低共结花岗岩,导致分异的I型、S型和A型花岗岩在化学组成上部分重叠,使得鉴定出现困难,需要综合岩石学、矿物学和地球化学等多种证据进行判别。从矿物组成上,角闪石、堇青石和碱性铁镁矿物被认为是判断上述三大类型花岗岩最有效的矿物学标志(Miller,1985;吴福元等,2007),而小柳沟二长花岗岩和花岗闪长岩中缺乏标志性矿物,从矿物学上难以划分成因类型。实验研究表明,在准铝质到弱过铝质岩浆中,磷灰石的溶解度很低,并在岩浆分异过程中随SiO2的增高而降低;而在强过铝质岩浆中,磷灰石溶解度变化趋势与此相反,随SiO2的增加而增高或基本保持不变(Wolf and London,1994),磷灰石在I型和S型花岗岩浆中这种不同行为已被成功地用于区分I型和S型花岗岩类(Chappell, 1999;Wuetal.,2003;Lietal.,2006,2007)。本文数据表明,二长花岗岩和花岗闪长岩的P2O5含量均低于0.15%,明显不同于S型花岗岩常具较高P2O5含量(>0.20%,Chappell,1999)的特征,在SiO2-P2O5及SiO2-Pb图解上(图8a, b),二者投影点变化趋势与I型花岗岩演化趋势一致。锆石饱和温度(Watson and Harrison,1983)计算结果(表2)表明,二长花岗岩温度介于682~774℃,平均温度716℃;花岗闪长岩温度介于760~796℃,平均775℃,二者较低的成岩温度不支持他们为A型花岗岩,后者的锆石饱和温度常在800℃以上(Kingetal.,1997)。因此小柳沟二长花岗岩和花岗闪长岩应为I型花岗岩,且二者分异程度均较高,可归属为高分异I型花岗岩。

5.2.2 岩浆源区

图9 小柳沟花岗质岩石的εHf(t)-t (a)和176Hf/177Hf-t (b)图解Fig.9 εHf(t) vs. t (a) and 176Hf/177Hf vs. t (b)diagrams of the granites from Xiaoliugou plutons

锆石极强的稳定性使其Hf同位素组成较少受到后期地质事件的影响,极低的Lu含量可以获得锆石形成时准确的Hf同位素组成,这些特性使锆石成为目前探讨地壳演化和示踪岩石源区的重要工具(Amelinetal.,1999)。二长花岗岩初始176Hf/177Hf比值介于0.282385~0.282622,εHf(t)为-4.45~4.04,二阶段模式年龄(tDM2)为1176~1714Ma,花岗闪长岩初始176Hf/177Hf比值介于0.282406~0.282653,εHf(t)为-4.18~4.43,二阶段模式年龄(tDM2)为1124~1670Ma。在εHf(t)-t图解(图9a)和176Hf/177Hf-t图解(图9b)中,二者均落在球粒陨石演化线附近及以下的下地壳区域,表明其岩浆可能来源于古老地壳的重熔,成岩过程应有年轻组分的参与。年轻组分参与花岗岩成岩过程的方式可能有两种情形,其一为幔源岩浆与其诱发的地壳物质部分熔融形成的长英质岩浆在地壳深部混合形成壳幔混源岩浆(Griffinetal.,2002;Belousovaetal.,2006;Kempetal.,2007;Yangetal.,2007);另一种是幔源岩浆首先侵入到地壳基底岩石中形成初生地壳,然后在后期热事件的影响下,这种既有初生地壳又有古老基底地壳构成的混合地壳原岩发生部分熔融(Pitcheretal.,1985;Jahnetal.,2000;Wuetal.,2006b;Zhengetal.,2007)。本文二长花岗岩和花岗闪长岩的εHf(t)值变化于正值与负值之间,且变化范围均较大(约8.5个ε单位),这就需要一个开放系统来引起熔体中176Hf/177Hf比值的明显变化(Kempetal.,2007)。由于锆石Hf同位素比值不会随部分熔融或分离结晶而变化,因此源区的这种Hf同位素不均一性可以理解为幔源和壳源这两种端元之间相互作用的结果(Bolharetal.,2008),由此可知小柳沟二长花岗岩和花岗闪长岩可能是由幔源岩浆与其诱发的地壳物质部分熔融形成的长英质岩浆在地壳深部直接混合形成的。二长花岗岩和花岗闪长岩的二阶段模式年龄(tDM2)接近,均显示其源区主要为中元古代古老地壳岩石,由于锆石Hf同位素地壳模式年龄是从锆石εHf(t)值计算得来,而壳幔相互作用是不可避免的,所以获得的锆石εHf(t)值实际上代表了幔源物质(大的正εHf(t)值)和古老地壳物质(大的负正εHf(t)值)混合后的产物,因此获得的古老地壳物质的εHf(t)值应该更负,其对应的地壳模式年龄应该更老。所以,推测其壳源源区很可能来源于古元古代-中元古代古老地壳岩石。在稀土元素球粒陨石标准化图解(图7b,d)上,二长花岗岩具有平坦略微左倾的HREE配分模式,表明其源区残留相中存在大量角闪石(Geetal.,2002),花岗闪长岩具有右倾的HREE配分模式,表明源区残留相出现石榴石(Xiongetal.,2005),结合两者均有明显负Eu异常,可知二长花岗岩源区为角闪石和斜长石稳定区,花岗闪长岩源区为石榴石和斜长石稳定区,二者相比,显然后者源区较深。根据前人资料,元古代老地层W的丰度值较平均地壳富集,尤其是古元古代的北大河岩群与中元古代的朱龙关群,W的丰度值相对平均地壳富集可达十几倍到几十倍不等(邹治平和黄传俭,1998*邹治平, 黄传俭. 1998. 甘肃省肃北蒙古族自治县塔尔沟钨矿床特征. 科研报告. 甘肃省地质矿产局酒泉地质矿产调查队),可能是小柳沟钨矿的初始矿源层。

5.3 岩浆-成矿作用的地球动力学背景

作为中国中生代之前的古板块研究最透彻的造山带之一,北祁连造山带的形成及构造演化仍存在一些争议,但同时也达成了一定的共识,大多数人认为北祁连从早元古代中期开始,大陆岩石圈拉伸、减薄,发生裂谷化,发育元古宙大陆溢流玄武岩(左国朝和刘寄陈,1987;葛肖虹和刘俊来,1999;夏林圻等,1995,2000);至新元古代,裂谷作用进一步加强,发育以双峰式火山岩为特征的大陆裂谷火山作用;至晚寒武世,最终发生大陆裂解和分离,形成北祁连早古生代洋盆,于奥陶纪北祁连洋盆开始了俯冲消减作用(左国朝和刘寄陈,1987;葛肖虹和刘俊来,1999;张旗等,2000;曾建元等,2007;夏林圻等,1995),俯冲消减作用可贯穿整个奥陶纪,之后于志留纪-泥盆纪发生碰撞造山(吴才来等,2006;Xiaetal.,2003;Songetal.,2007,2009;Zhangetal.,2007)。对于俯冲消减样式,李文渊(2004)、李文渊等(2005)在前人研究的基础上根据东西段区域岩石组合和成矿特征上的差异提出早古生代北祁连洋的消减存在构造转换,东段为洋-洋俯冲的沟-弧-盆系大陆边缘,西段则转换为洋-陆俯冲的活动大陆边缘。

随着高精度锆石U-Pb定年方法的广泛应用和大量年龄数据的产生,现可在区域构造演化的年代学框架内限定岩浆活动的时限,综合区域构造演化和成岩年代学资料,小柳沟二长花岗岩形成于晚奥陶世(锆石U-Pb年龄454.0±2.0Ma),对应于俯冲背景下的活动大陆边缘环境,花岗闪长岩形成于晚志留世(锆石U-Pb年龄417.7±1.7Ma),对应于碰撞造山环境,与邻区野牛滩岩体锆石U-Pb年龄459.6±2.5Ma,形成于板块俯冲期(毛景文等,2000),金佛寺岩体第Ⅰ期岩体Rb-Sr年龄分别为419.87±0.4Ma,形成于碰撞造山期(张德全等,1995)一致。区域地质演化研究表明,北祁连俯冲造山开始于460Ma或更早,可以追溯到495Ma(Feng and He,1996),长期持续的俯冲挤压作用有利于幔源基性岩浆在壳幔边界聚集并发生充分的壳幔相互作用(Richards,2003)。综上所述,小柳沟钨钼矿床的成矿过程可能为:早奥陶世北祁连洋壳俯冲于陆壳之下,在长期持续的挤压作用中,幔源基性岩浆在壳幔边界聚集并发生充分的壳幔相互作用使古元古代-中元古代古老地壳岩石(北大河岩群与朱龙关群)重熔,在地壳深部形成的壳幔混源岩浆在上侵定位过程中又经历了高度分异演化,成矿元素W、Mo等在残余熔体中高度富集,在岩体内形成斑岩型矿化,同时,岩浆热液与含钨高钙围岩发生交代作用形成矽卡岩型矿化,之后岩体进一步冷凝,岩体隆起部位出现一系列断裂系统,岩浆期后含矿热液沿构造裂隙上升并萃取围岩中的成矿元素沉淀形成石英脉型矿化。

6 结论

(1)小柳沟二长花岗岩和花岗闪长岩侵位时代分别为454.0±2.0Ma和417.7±1.7Ma,属于加里东期岩浆活动的产物,并于海西期和燕山期经历过岩浆热事件的改造。小柳沟钨钼(铜)矿与早期的二长花岗岩具有密切的时、空关系。

(2)小柳沟花岗质岩石具有高硅富碱特点,属于过铝质高钾钙碱性系列,富集Rb、Th、U、K、Pb,亏损Ba、Sr、Ti、P,具有明显Eu负异常,尤其是二长花岗岩经历了高度分异演化,显示强烈的铕负异常,具稀土元素四分组效应特征,属于高分异I型花岗岩。岩石地球化学特征表明,钨钼(铜)矿化与二长花岗岩有密切成因关系。

(3)锆石Hf同位素分析结果显示,二长花岗岩εHf(t)为-4.45~4.04,tDM2=1176~1714Ma,花岗闪长岩εHf(t)为-4.18~4.43,tDM2=1124~1670Ma,表明二者并非来自于单一的源区,可能是由壳幔混合作用形成,其壳源源区很可能是古元古代-中元古代古老地壳岩石,花岗闪长岩的源区相对较深,北大河岩群与朱龙关群可能是小柳沟钨矿的初始矿源层。

(4)综合区域构造演化和成岩年代学资料,小柳沟二长花岗岩应形成于俯冲背景下的活动大陆边缘环境,花岗闪长岩形成于碰撞造山环境。

致谢野外工作期间得到了甘肃新洲矿业有限公司的大力支持;数据测试得到了侯可军、郭春丽的帮助;审稿专家对本文提出了诸多宝贵意见;在此一并表示感谢!

Amelin Y, Lee DC, Halliday AN and Pidgeon RT. 1999. Nature of the earth’s crust from hafnium isotopes in single detrital zircon. Nature, 399(6733): 252-255

Amelin Y, Lee DC and Halliday AN. 2000. Early-Middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225

An T and Zhou JQ. 2002. The geological character and metallogenic model of W-multimetal ore deposit in Xiaoliugou Gansu. Acta Geologica Gansu, 11(2): 54-66 (in Chinese with English abstract)

Andersen T. 2002. Correlation of common lead in U-Pb analyses that do not report204Pb. Chemical Geology, 192(1-2): 59-79

Bai ZW, Yang Y and Mu ZF. 2005. Controlled factors and metallogenic relations of Xiaoliugou wolfram field in Gansu Province. Acta Geologica Gansu, 14(2): 64-69 (in Chinese with English abstract)

Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol., 123(3): 323-333

Belousova EA, Griffin WL and O’Reilly SY. 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: Examples from Eastern Australian granitoids. Journal of Petrology, 47(2): 329-353

Blichert-Toft J, Chauvel C and Albarede F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127 (3): 248-260

Bolhar R, Weaver SD, Whitehouse MJetal. 2008. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth Planet. Sci. Lett., 268(3-4): 312-324

Candela PA and Holland HD. 1986. A mass transfer model for copper and molybdenum in magmatic hydrothermal systems: The origin of porphyry-type ore deposits. Econ. Geol., 81(1): 1-19

Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174

Chappell BW and White AJR. 1992. I and S-type granites in the Lachlan Fold Bell. Trans. Royal. Edinburgh: Earth Sci., 83(1-2): 1-26

Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551

Chappell BW and White AJR. 2001. Two contrasting granite type: 25 years later. Australian Journal of Earth Science, 48(4): 489-499

Chen F, Qiao LB and Chen JP. 2007. Synthesis prospecting model in the Xiaoliugou W-Mo polymetallic mineralizing region, Gansu. Geology and Prospecting, 43(6): 17-24 (in Chinese with English abstract)

Chen YC, Ye TZ, Zhang HTetal. 1999. Prospect Evaluation of Mineral Resources in the Main Metallogenic Belt of China. Beijing: Geological Publishing House, 1-120 (in Chinese)

Chen YF, Bai Zw and Sun CP. 2010. Mineralization mechanism and exploration orientation of Xiaoliugou wolfram deposit in Gansu Province. Gansu Metallurgy, 32(1): 75-80 (in Chinese with English abstract)

Darnley AG, Bjorklund A, Bolviken B, Gustavsson N, Koval PV, Plant JA, Steenfelt A, Tauchid M and Xie XJ. 1985. A global geochemical database for environment. Earth Sciences,19: 37-53

Dou YJ. 1999. Geology and origin of the Xiaoliugou scheelite deposit in Gansu. Geological Exploration for Non-Ferrous Metals, 8(6): 417-422 (in Chinese with English abstract)

Du YS, Zhu J, Han X and Gu SZ. 2004. From the back-arc basin to foreland basin: Ordovician-Devonian sedimentary basin and tectonic evolution in the North Qilian orogenic belt. Geological Bulletin of China, 23(9-10): 911-917 (in Chinese with English abstract)

Eby GN. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115-134

Elhlou S, Belousova E, Griffin WLetal. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta, 70(18): A158

Ermolov PV. 2000. Granite-related ore systems of Kazakhstan. In: Kremenetsky A, Lehmann B and Seltmann R (eds.). Ore-bearing Granites of Russia and Adjacent Countries. Moscow: Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements, 83-96

Feng YM and Wu HQ. 1992. Tectonic evolution of North Qilian Mountains and its neighborhood since Paleozoic. Northwest Geoscience, 13(2): 61-74 (in Chinese with English abstract)

Feng YM and He SP. 1996. Orogenic process of the Qilian Mountains. Acta Geosci. Sinica, Special Issue, 76(2): 1-5

Feng YM. 1997. Investigatory summary of the Qilian orogenic belt, China: History, presence and prospect. Advence in Earth Sciences, 12(4): 307-314 (in Chinese with English abstract)

Frost CD and Frost BR. 2011. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. Journal of Petrology, 52(1): 39-53

Gao ZK and Bai ZW. 2003. Study on wolfram ore-forming regularities of Qilian fold system. Acta Geologica Gansu, 12(2): 59-61 (in Chinese with English abstract)

Gao ZK, Ding ZJ, Song SG, Han YQ and Chen SY. 2011. Metallogenic System of Tungsten-molybdenum Associated With the Granite in Qilian Orogenic Belt. Wuhan: China University of Geosciences Press, 1-233 (in Chinese)

Ge XH and Liu JL. 1999. Formation and tectonic background of the northern Qilian orogenic belt. Earth Science Frontiers, 6(4): 223-230 (in Chinese with English abstract)

Ge XY, Li XH, Chen ZGetal. 2002. Geochemistry and petrogenesis of Jurassic high Sr low Y granitoids in eastern China: Constrains on crustal thickness. Chinese Science Bulletin, 47(11): 962-968

Griffin WL, Wang X, Jackson SEetal. 2000. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotope, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269

Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269

Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solidstate recrystallization of protolith igneous zircon. J. Metamorph. Geol., 18(4): 423-439

Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)

Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)

Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta, 63(3-4): 489-508

Jahn BM, Wu FY and Chen B. 2000. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1-2): 181-193

Jahn BM, Wu FY, Capdevila R, Fourcade S, Wang YX and Zhao ZH. 2001. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xingan (Khingan) Mountains in NE China. Lithos, 59(4): 171-198

Jia QZ, Yang ZT, Xiao ZYetal. 2007. Metallogenic Regularity and Prediction of Cu-Au-Pb-Zn Deposits in the Qilian Mountains. Beijing: Geological Publishing House, 1-313 (in Chinese)

Keith JD, Clark AH and Hodgson CJ. 1985. Characterization of granitoid rocks associated with tungsten skarn deposits of the North American Cordillera. Geological Society of America, Abstracts with Programs, 17: 625

Kemp AIS, Hawkesworth CJ, Foster GJ, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980-983

King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38(3): 371-391

Kremenetsky AA. 1994. On the evolution of fluid-rock systems in pre-syn- and post-collisional stages. In: Seltmann R, Kaempf H and Moller P (eds.). Metallogeny of Collisional Orogens. Prague: Czech Geol. Survey, 327-335

Li WY. 2004. Main mineral deposit associations in the Qilian Mountains and their metallogenic dynamics. Acta Geosicientia Sinica, 6(3): 313-320 (in Chinese with English abstract)

Li WY, Guo ZP and Wang W. 2005. Caledonian convergent transformation and metallogenetic response in the North Qilian Mountains. Geological Review, 51(2): 120-127 (in Chinese with English abstract)

Li XH, Li ZX, Li WX and Wang YJ. 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian magmatic arc in the Hainan Island. Journal Geology, 114(3): 341-353

Li XH, Li ZX, Li WXetal. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96: 186-204

Liu DF and Chen YF. 2005. Characteristics and mineralization appraise of quartz veins of Xiaoliugou wolfram deposit in Gansu Province. Contributions to Geology and Mineral Resources Research, 20(3): 182-187 (in Chinese with English abstract)

Liu XH, Deng J, Sun BN, Yan FZ, Ni KQ, Sun XL, Liu JF and Ni SG. 2009. Study on Rock-forming and Ore-forming of the Jinfosi Pluton, Western Part of the North Qilian Mountains. Beijing: Geological Publishing House, 1-128 (in Chinese)

Liu YS, Hu ZC, Gao S, Gunther D, Xu J, Gao C and Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-MC-ICP MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43

Ludwig KR. 2003. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, No.4: 1-66

Mao JW and Song SH. 1988. Igneous Rocks and Tin-polymetallic Deposits Metallogenic Series in Northern Guangxi. Beijing: Science and Technology Press, 2-40 (in Chinese)

Mao JW, Li HY and Pei RF. 1995a. Geology and geochemistry of the Qianlishan granite stock and its relationship to polymetallic tungsten mineralization. Mineral Deposits, 14(1): 12-25 (in Chinese with English abstract)

Mao JW, Li HY and Pei RF. 1995b. Nd-Sr isotopic and petro-genetic studies of the Qianlishan granite stock, Hunan Province. Mineral Deposits, 14(3): 235-240(in Chinese with English abstract)

Mao JW, Zhang ZH, Zhang ZC, Yang JM and Wang ZL. 1998. Geology of Ta′ergou skarn-quartz vein type tungsten deposit in Northwest Qilian Orogen. Mineral Deposits, 17(Suppl.): 543-548 (in Chinese)

Mao JW, Zhang ZC, Zhang ZH and Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818

Mao JW, Zhang ZC, Ren FS, Zuo GC, Zhang ZH, Yang JM, Wang ZL and Ye DJ. 1999. Temporal and spatial distribution and evolution of ore deposits in the west sector of the northern Qilian Mountains. Acta Geologica Sinica, 73(1): 73-82 (in Chinese with English abstract)

Mao JW, Zhang ZZ, Lehmann B, Zhang ZC, Yang JM and Wang ZL. 2000. The Yeniutan granodiorite in Subei County, Gansu Province, China: Petrological features, geological setting and relationship to tungsten mineralization. Episodes, 23(3): 163-171

Mao JW, Zhang ZH, Jian P, Wang ZL, Yang JM and Zhang ZC. 2000. U-Pb zircon dating of the Yeniutan granitic intrusion in the western part of the North Qilian Mountains. Geological Review, 46(6): 616-620 (in Chinese with English abstract)

Mao JW, Zhang ZC, Yang JM, Zuo GC, Zhang ZH, Ye DJ, Wang ZL, Ren FS, Zhang YJ, Peng C, Liu YZ and Jiang M. 2003. Metallogenic Series and Prospecting Evaluation of Cu-Au-Fe-W Polymetallic Deposits in Northwest Qilian Orogen. Beijing: Geological Publishing House, 1-437 (in Chinese)

Miller CF. 1985. Are strongly peraluminous magmas derived from politic sedimentary source? J. Geol., 93(6): 673-689

Mo ZS, Ye BD, Pan WZ, Wang SN, Zhang JL, Gao BZ, Liu JQ and Liu WZ. 1980. Geology of Granite in Nanling Area. Beijing: Geological Publishing House, 1-363 (in Chinese)

Newberry RJ. 1982. Tungsten-bearing skarns of the Sierra Nevada; I, The Pine Creek Mine, California. Economic Geology, 77(4): 823-844

Newberry RJ and Swanson SE. 1986. Scheelite skarn granitoids: An evaluation of the roles of magmatic source and process. Journal of Ore Geology Reviews, 1(1): 57-81

Peccerillo R and Taylor SR. 1976. Geochemistry of Eocene calakaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58(1): 63-81

Pitcher WS, Atherton MD, Cobbing EJ and Beckinsale RD. 1985. Magmatism at A Plate Edge: The Peruvian Andes. Glasgow: Blackie-Halsted Press, 1-328

Qiao LB, Zhang YC and Lin S. 2008. Gansu Qiqing Mo deposit quartz vein mineralization with the relationship between Mo. Gansu Metallurgy, 30(5): 32-35 (in Chinese with English abstract)

Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ. Geol., 98(8): 1515-1533

Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263

Rui ZY, Huang CK, Qi GM, Xu J and Zhang HT. 1984. Porphyry Copper (Molybdenum) Deposits of China. Beijing: Geological Publishing House, 1-350 (in Chinese)

Sawkins FJ. 1990. Metal Deposits in Relation to Plate Tectonics. 2nd. Edition. Berlin: Springer Verlag, 1-461

Soderlund U, Patchtt PJ, Verrot JD and Isacheen CE. 2004. The176Lu decay contant determined by Lu-Hf and U-Pb istope systematics of Precambrian mafic intrusion. Earth and Planetary Science Letters, 219(3-4): 311-324

Song SG, Zhang L, Niu Yetal. 2007. Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone, NW China: Implications for Early Paleozoic cold oceanic subduction and water transport into mantle. Journal of Metamorphic Geology, 25(5): 547-563

Song SG, Niu Y, Zhang Letal. 2009. Tectonic evolution of Early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China: New perspectives. Journal of Asian Earth Science, 35(3-4): 334-353

Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and process. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Spc. Publ. Geol. Soc. Lond, 42: 313-345

Sylvester PJ. 1989. Post-collisional alkaline granites. Journal of Geology, 97(3): 261-281

Tang JR, Xi XS, Fan XR, An T and Liu DF. 2006. Types and feature of the metallotectonic and Cu-W ore deposit mechanisms in Xiaoliugou, Gansu. Journal of Guilin Institute of Technology, 26(2): 177-180 (in Chinese with English abstract)

Trunilina VA. 1994. Geodynamic position, genesis and criteria for ore content of tin-bearing granitoids from the Yana-Kolyma region. In: Seltmann R, Kaempf H and Moller P (eds.). Metallogeny of Collisional Orogens. Prague: Czech Geol. Survey, 430-434

Tseng CY, Yang HR, Yang HY, Liu DY, Cai JL, Wu HQ and Zuo GC. 2007. The ophiolite of Dongcaohe in North Qilian: A fragment from oceanic crust of Early Paleozoic. Chinese Science Bulletin, 52(7): 825-835 (in Chinese)

Vervoort JD, Pachelt PJ, Gehrels GE and Nutman AP. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature, 379(6566): 624-627

Wang HF and Zhou JQ. 2009. Xiaoliugou tungsten-molybdenum ore-mining features and explore the genesis of ore deposits. Gansu Metallurgy, 31(4): 50-52 (in Chinese with English abstract)

Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304

Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419

Wolf MB and London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms. Geochimica et Cosmochimica Acta, 58(19): 4127-4245

Wu CL, Yao SZ, Yang JS, Zeng LS, Chen SY, Li HB, Qi XX, Wooden JL and Mazdab FK. 2006. Double-subduction of the Early Paleozoic North Qilian oceanic plate: Evidence from granites in the central segment of North Qilian, NW China. Geology in China, 53(2): 1197-1208 (in Chinese with English abstract)

Wu FY, Jahn BM, Wilder SAetal. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos, 66(3-4): 241-273

Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006a. Hf isotopic compositon of the stardard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol., 234(1-2): 105-126

Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)

Wu RX, Zheng YF, Wu YB, Zhao ZF, Zhang SB, Liu XM and Wu FY. 2006b. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 146(3-4): 179-212

Xia LQ, Xia ZC and Xu XY. 1995. Dynamics of tectono-volcano-magmatic evolution from North Qilian Mountains, China. Northwest Geoscience, 16(1): 1-28 (in Chinese with English abstract)

Xia LQ, Xia ZC and Xu XY. 1998. Early Palaeozoic mid-ocean ridge-ocean island and back-arc basin volcanism in the North Qilian Mountains. Acta Geologica Sinica, 72(4): 301-312 (in Chinese with English abstract)

Xia LQ, Xia ZC, Zhao JT, Xu XY, Yang HQ and Zhao DH. 2000. The determination of the nature of Proterozoic continental flood basalts in Northwest Qilian. Science in China (Series D), 30(1): 1-8 (in Chinese)

Xia LQ, Xia ZC and Xu XY. 2003. Magmagenesis in the Ordovician back-arc basins of the northern Qilian Mountain, China. Geological Society of America Bulletin, 115(12): 1510-1522

Xiao ZY, Zou XH, Jia QZ, Yang ZT, Xiao SY, Duan YM and Su LH. 2003. Present situation of the mineral resources in Qilian metallogenic belt and thinking. Northwestern Geology, 36(3): 38-49 (in Chinese with English abstract)

Xiong XL, Adam J and Green TH. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implication for TTG genesis. Chemical Geology, 218(3-4): 339-359

Xu KQ, Hu SX, Sun MZ and Ye J. 1982. On the two genetic series of granites in southeastern China and their metallogenetic characteristics. Mineral Deposits, 1(2): 1-14 (in Chinese with English abstract)

Xu XY, He SP, Wang HL, Chen JL, Zhang EP and Feng YM. 1982. Geological Survey for the Northwest of China. Beijing: Science Press, 1-347(in Chinese)

Yang JH, Wu FY, Wilde SA, Xie LW, Yang YH and Liu XM. 2007. Trace magma mixing in granite genesis: In-situ U-Pb dating and Hf isotope analysis of zircons. Contributions to Mineralogy and Petrology, 153(2): 177-190

Yang ZT, Jia QZ, Xiao ZY, Zou XH, Ye DJ, Duan YM, Zhao JW and Su LH. 2002. Metallogenic geological conditions of Taergou-Xiaoliugou W-collecting area and regional prospecting in Qilian metallogenic belt. Mineral Deposits, 21(Suppl.): 515-518 (in Chinese with English abstract)

Zhang DQ, Sun GY and Xu HL. 1995. Petrology and isotope chronology of the Jinfosi pluton, Qilian Mts., Gansu. Acta Geoscientica Sinica, 16(4): 375-385 (in Chinese with English abstract)

Zhang JX, Meng FC and Wan YS. 2007. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China: Petrological and U-Pb geochronological constraints. Journal of Metamorphic Geology, 25(3): 285-304

Zhang LY, Qu XM and Xin HB. 2008. Geochemical characteristics, zircon U-Pb LA-ICP-MS ages of medium-acid dykes in the Huashugou iron-copper deposit, Jingtieshan orefield, and their geological significances. Geological Review, 54(2): 253-262 (in Chinese with English abstract)

Zhang Q, Wang Y and Qian Q. 2000. he North Qilian oceanic basin of the Early Paleozoic age: An aulacogen or a large oceanic basin: A discussion with Ge XH. Scientia Geologica Sinica, 35(1): 121-128(in Chinese with English abstract)

Zhang Q, Zhou GQ and Wang Y. 2003. The distribution of time and space of chinese ophiolites, and their tectonic settings. Acta Petrologica Sinica, 19(1): 1-8 (in Chinese with English abstract)

Zhang SY, Li J, Zhou JQ and Zhang Q. 2002. The geological characters of Xiaoliugou Cu-W deposit. Geology and Prospecting, 38(4): 33-35, 40 (in Chinese with English abstract)

Zhang ZH, Mao JW, Yang JM, Zhang ZC, Wang ZL and Zuo GC. 1999. Study on geochemistry of ore-forming fluids in Xiaoliugou W(Mo) deposit, Gansu Province. Acta Geoscientia Sinica, 20(Suppl.): 292-297 (in Chinese with English abstract)

Zhang ZH, Mao JW, Yang JM, Wang ZL and Zhang ZC. 2002. Geology and genesis of Ta′ergou skarn-quartz vein type tungsten deposit in North Qilian Caledonian Orogen, Northwest China. Mineral Deposits, 21(2): 200-211 (in Chinese with English abstract)

Zhang ZS and Lin S. 2010. Characteristics of REE geochemistry of the ore-bearing concealed granite in Xiaoliugou, Gansu Province. Journal of Henan Polytechnic University (Natural Science), 29(2): 173-179 (in Chinese with English abstract)

Zhao ZH, Masuda A and Shabani MB. 1992. Tetrad effects of rare-earth elements in rare-metal granites. Geochimica, (3): 221-233(in Chinese with English abstract)

Zheng YF, Wei CS, Wang ZR, Huang YS and Zhang H. 1997. An isotope study on the cooling history of the Dalongshan granitic massif and its bearing on mineralizing process. Chinese Journal of Geology, 32(4): 465-477 (in Chinese with English abstract)

Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li XH, Li ZX and Wu FY. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 96(1-2): 127-150

Zhou H. 2004. Ore fluid characteristics of Xiaoliugou tunsten deposit. Contributions to Geology and Mineral Resources Research, 19(2): 110-113 (in Chinese with English abstract)

Zhou H, Lin S and Si XF. 2004. Trace element geochemical characteristics of tungsten deposit in Xiaoliugou, Gansu. Journal of Guilin Institute of Technology, 24(3): 273-277 (in Chinese with English abstract)

Zhou TG, Zhang DZ and Zhou H. 1999. Geological features and genesis of the Xiaoliugou Cu-W polymetallic deposit in Gansu. Northwestern Geology, 32(3): 1-10(in Chinese with English abstract)

Zuo GC and Liu JC. 1987. The evolution of tectonic of Early Paleozoic in North Qilian range, China. Chinese Journal of Geology, (1): 15-24 (in Chinese with English abstract)

Zuo GC and Wu HQ. 1997. A bisubduction collision orogenic model of Early Paleozoic in the middle part of North Qilian area. Advence in Earth Sciences, 12(4): 315-323 (in Chinese with English abstract)

Zuo GC, Liu YK and Zhang C. 2002. Tectono-stratigraphic characteristics of continent crustal remnants in central-western sector of the North Qilian orogen. Scientia Geologica Sinica, 37(3): 302-312 (in Chinese with English abstract)

附中文参考文献

安涛, 周继强. 2002. 甘肃小柳沟钨多金属矿地质特征及成矿模式. 甘肃地质学报, 11(2): 54-66

白仲吾, 杨彦, 慕政芳. 2005. 甘肃小柳沟矿区钨钼矿控矿因素及成因关系探讨. 甘肃地质学报, 14(2): 64-69

陈福, 乔立斌, 陈进平. 2007. 甘肃小柳沟钨钼多金属成矿区综合找矿模型研究. 地质与勘探, 43(6): 17-24

陈毓川, 叶天竺, 张洪涛等. 1999. 中国主要成矿区带矿产资源远景评价. 北京: 地质出版社, 1-120

陈玉峰, 白仲吾, 孙仓平. 2010. 甘肃小柳沟钨矿床成矿机制及找矿方向. 甘肃冶金, 32(1): 75-80

窦元杰. 1999. 甘肃小柳沟白钨矿床地质特征及成因初探. 有色金属矿产与勘查, 8(6): 417-422

杜远生, 朱杰, 韩欣, 顾松竹. 2004. 从弧后盆地到前陆盆地——北祁连造山带奥陶纪-泥盆纪的沉积盆地与构造演化. 地质通报, 23(9-10): 911-917

冯益民, 吴汉泉. 1992. 北祁连山及其邻区古生代以来的大地构造演化初探. 西北地质科学, 13(2): 61-74

冯益民. 1997. 祁连造山带研究概况-历史、现状及展望. 地球科学进展, 12(4): 307-314

高兆奎, 白仲吾. 2003. 祁连褶皱系钨成矿规律研究. 甘肃地质学报, 12(2): 59- 61

高兆奎, 丁振举, 宋史刚, 韩要权, 陈守余. 2011. 祁连造山带与花岗岩有关的钨钼多金属成矿系统. 武汉: 中国地质大学出版社, 1-233

葛肖虹, 刘俊来. 1999. 北祁连造山带的形成与背景. 地学前缘, 6(4): 223-230

侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604

侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492

贾群子, 杨忠堂, 肖朝阳等. 2007. 祁连山铜金钨铅锌矿床成矿规律和成矿预测. 北京: 地质出版社, 1-313

李文渊. 2004. 祁连山主要矿床组合及其成矿动力学分析. 地球学报, 25(3): 313-320

李文渊, 郭周平, 王伟. 2005. 北祁连山加里东期聚敛作用的构造转换及其成矿响应. 地质论评, 51(2): 120-127

刘堆富, 陈玉峰. 2005. 甘肃小柳沟钨矿床石英脉特征及其含矿性评价. 地质找矿论丛, 20(3): 182-187

刘晓煌, 邓军, 孙柏年, 阎凤增, 倪克庆, 孙兴丽, 刘玖芬, 倪胜国. 2009. 北祁连西段金佛寺岩体的成岩成矿作用研究. 北京: 地质出版社, 1-128

毛景文, 宋叔和. 1988. 桂北地区火成岩系列和锡多金属矿床成矿系列. 北京: 科学技术出版社, 2-40

毛景文, 李红艳, 裴荣富. 1995a. 千里山花岗岩体地质地球化学及与成矿关系. 矿床地质, 14(1): 12-25

毛景文, 李红艳, 裴荣富. 1995b. 湖南千里山花岗岩体的Nd-Sr同位素及岩石成因研究. 矿床地质, 14(3): 235-240

毛景文, 张作衡, 张招崇等. 1998. 北祁连山西段塔儿沟夕卡岩型-石英脉型钨矿床. 矿床地质, 17(增刊): 543-548

毛景文, 张招祟, 任丰寿, 左国朝, 张作衡, 杨建民, 王志良, 叶得金. 1999. 北祁连山西段金属矿床时空分布和生成演化. 地质学报, 73(1): 73-82

毛景文, 张作衡, 简平, 王志良, 杨建民, 张招崇. 2000. 北祁连西段花岗质岩体的锆石U-Pb年龄报道. 地质论评, 46(6): 616-620

毛景文, 张招崇, 杨建民, 左国朝, 张作衡, 叶得金, 王志良, 任丰寿, 张玉君, 彭聪, 刘煜洲, 姜枚. 2003. 北祁连山西段铜金铁钨多金属矿床成矿系列和找矿评价. 北京: 地质出版社, 1-437

莫柱孙, 叶伯丹, 潘维祖, 汪绍年, 庄锦良, 高秉璋, 刘金全, 刘文章. 1980. 南岭花岗岩地质学. 北京: 地质出版社, 1-363

乔立斌, 张玉成, 林森. 2008. 甘肃祁青钼矿床石英脉与钼成矿关系探讨. 甘肃冶金, 30(5): 32-35

芮宗瑶, 黄崇轲, 齐国明, 徐珏, 张洪涛. 1984. 中国斑岩铜(钼)矿床. 北京: 地质出版社, 1-350

汤静如, 奚小双, 范效仁, 安涛, 刘堆富. 2006. 甘肃小柳沟铜钨矿床成矿构造类型及控矿机制. 桂林工学院学报, 26(2): 177-180

汪海峰, 周继强. 2009. 小柳沟钨钼矿区控矿特征及矿床成因探讨. 甘肃冶金, 31(4): 50-52

吴才来, 姚尚志, 杨经绥, 曾令森, 陈松永, 李海兵, 戚学祥, Wooden JL, Mazdab FK. 2006. 北祁连洋早古生代双向俯冲的花岗岩证据. 中国地质, 33(6): 1197-1208

吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238

夏林圻, 夏祖春, 徐学义. 1995. 北祁连山构造-火山岩浆演化动力学. 西北地质科学, 16(1): 1-28

夏林圻, 夏祖冲, 徐学义. 1998. 北祁连山早古生代洋脊-洋岛和弧后盆地火山作用. 地质学报, 72(4): 301-312

夏林圻, 夏祖春, 赵江天, 徐学义, 杨合群, 赵东宏. 2000. 北祁连山西段元古宙大陆溢流玄武岩性质的确定. 中国科学(D辑), 30(1): 1-8

肖朝阳, 邹湘华, 贾群子, 杨钟堂, 肖思云, 段永民, 苏亮红. 2003. 祁连成矿带矿产资源现状及思考. 西北地质, 36(3): 38-49

徐克勤, 胡受奚, 孙明志, 叶俊. 1982. 华南两个成因系列花岗岩及其成矿特征. 矿床地质, 1(2): 1-14

徐学义, 何世平, 王洪亮, 陈隽璐, 张二朋, 冯益民. 2008. 中国西北部地质概论. 北京: 科学出版社, 1-347

杨钟堂, 贾群子, 肖朝阳, 邹湘华, 叶得金, 段永民, 赵俊伟, 苏亮红. 2002. 塔儿沟-小柳沟钨矿集区成矿条件及区域找钨. 矿床地质, 21(增刊): 515-518

曾建元, 杨怀仁, 杨宏仪, 刘敦一, 蔡金郎, 吴汉泉, 左国朝. 2007. 北祁连东草河蛇绿岩: 一个早古生代的洋壳残片. 科学通报, 52(7): 825-835

张德全, 孙桂英, 徐洪林. 1995. 祁连山金佛寺岩体的岩石学和同位素年代学研究. 地球学报, 16(4): 375-385

张兰英, 曲晓明, 辛洪波. 2008. 镜铁山桦树沟铁铜矿区中酸性岩脉地球化学特征、锆石U-Pb LA-ICP-MS年龄及其地质意义. 地质论评, 54(2): 253-262

张旗, 王焰, 钱青. 2000. 北祁连早古生代洋盆是裂陷槽还是大洋盆——与葛肖虹讨论. 地质科学, 35(1): 121-128

张旗, 周国庆, 王焰. 2003. 中国蛇绿岩的分布、时代及其形成环境. 岩石学报, 19(1): 1-8

张胜业, 李杰, 周继强, 张权. 2002. 小柳沟铜钨多金属矿区地质特征. 地质与勘探, 38(4): 33-35, 40

张作衡, 毛景文, 杨建民, 王志良, 张招崇. 2002. 北祁连加里东造山带塔儿沟夕卡岩-石英脉型钨矿床地质及成因. 矿床地质, 21(2): 200-211

张作衡, 毛景文, 杨建民, 张招崇, 王志良, 左国朝. 1999. 甘肃小柳沟石英脉型钨矿床成矿流体地球化学研究. 地球学报, 20(增刊): 292-297

张自森, 林森. 2010. 甘肃小柳沟含矿隐伏花岗岩稀土元素地球化学特征. 河南理工大学学报(自然科学版), 29(2): 173-179

赵振华, 增田彰正, Shabani MB. 1992. 稀有金属花岗岩的稀土元素四分组效应. 地球化学, (3): 221-233

郑永飞, 魏春生, 王峥嵘, 黄耀生, 张宏. 1997. 大龙山岩体的冷却史及其成矿关系的同位素研究. 地质科学, 32 (4): 465-477

周宏. 2004. 甘肃省小柳沟钨矿区成矿流体特征. 地质找矿论丛, 19(2): 110-113

周宏, 林森, 司雪峰. 2004. 甘肃小柳沟钨矿床微量元素地球化学特征. 桂林工学院学报, 24(3): 273-277

周廷贵, 张道忠, 周宏. 1999. 甘肃省小柳沟铜钨多金属矿床地质特征及成因探讨. 西北地质, 32(3): 1-10

左国朝, 刘寄陈. 1987. 北祁连早古生代大地构造演化. 地质科学, (1): 15-24

左国朝, 吴汉泉. 1997. 北祁连中段早古生代双向俯冲-碰撞造山模式剖析. 地球科学进展, 12(4): 315-323

左国朝, 刘义科, 张崇. 2002. 北祁连造山带中-西段陆壳残块群的构造-地层特征. 地质科学, 37(3): 302-312

猜你喜欢
祁连花岗闪长岩
祁连草场
壮美祁连
安山玢岩-花岗斑岩混合矿石的磨矿产品粒度特性研究
万众一心战疫情
关于RCA改性剂在闪长岩上面层的应用研究
摄影《祁连秋色》
广西丹池成矿带芒场矿田岩浆岩源区特征及锆石U-Pb年龄分析
金盆金矿矿床地质特征及找矿方向探讨
四川得荣新州辉长闪长岩体岩石学及地球化学特征
南太行綦村岩体中辉石的成因矿物学研究