摘要:现今学者对思维类型做了大量的研究,根据不同的分类标准,思维也分成不同的类型。本文从新的角度去探讨思维类型,将四种思维类型与教育方法相结合,给出大学生的学习模式,并且特别指出数学思维及其数学学习方法,最后给出创造性思维的彻底性原则。
关键词:思维类型;思维方法;原则
中图分类号:G640 文献标志码:A 文章编号:1674-9324(2014)03-0113-02
“思维类型”是一个通用概念,大量学者都对其进行了研究。事实上,明确区分思维的类型对教育来说具有重要的实际意义。为了更好地指导大学生的学习,增强他们的创新能力,本文从新的角度对思维类型进行分类,从四种思维类型出发给出学生的学习方法,特别对数学思维方法展开讨论,最后再给出创造性思维的彻底性原则。
一、思维类型及其对教育方法的启发
一般来说人们思维分为下述四种类型:接受快且深刻,接受快但肤浅,接受慢但深刻,接受慢且肤浅。当然最好的是接受快且深刻这种类型,这种类型的人往往自小就表现出天才模样,他们大都被称为是神童。可惜的是,他们在赞扬声中成长,很容易养成骄傲情绪,久而久之他们就不习惯于“艰苦研究”,最后变成平庸之人。王安石的《伤仲永》写的就是这种情况。所以对第一种类型的学生,我们对他们的爱护首先就是不要多表扬他们(例如各地过分吹捧高考状元是不明智的做法),其次对他们要多加督促,让他们养成艰苦学习习惯。列宁小时候聪明异常,他往往很快就完成作业,然后就嬉闹不止。他的父母很担心,怕他今后不会踏实学习,除了教育他以外,还时刻注意他。有一次列宁看到他的妹妹坐在钢琴边,不停地弹奏一首乐曲,花了许多小时,才把它弹得正确。为此列宁感悟道:做任何事情,没有坚毅品质是不行的。列宁的父母知道这件事后才放心,他们知道列宁已经懂得养成勤劳习惯的重要性。第二种类型(接受快但肤浅)的人,他们平常的表现最容易使人迷惑:许多复杂的问题他们一听就懂,可是他们自己做起来却经常出错。他们的家长和老师都误认为这是由于“粗心”造成的,除了告诫他们要细心以外,家长、老师(甚至他们自己)对这种现象都不在意。举一个例子,初中学生刚学习有理数时,写负数时往往会遗漏负号,当你向他指出时,他立刻就知道是自己错了。人们大都认为这是粗心的原因,殊不知是他在他的意识里还没有真正接受负数这个概念,也就是说他虽然接受了负数概念(也许很快就接受了)但是却很“肤浅”,他的潜意识里并没有它的“真正”位置。因为引导学生思想深化是一件困难的工作,所以对于接受快但肤浅的学生,我们也许更应该留心。除了教育他们不要骄傲(这是由于他们接受快而造成的错误)以外,还要训练他们的思维,让他们养成深思的习惯。(顺便提一下,怎样培养学生养成深思习惯,如同怎样提高学生的写作能力一样,至今都尚未找到特别行之有效的办法)第三种类型,即接受慢而深刻,在某种意义上它才是最好的一种类型。领会深本是探索一切知识的必要因素,可是他具有这种优越品质而不觉,有时他还为自己接受慢而苦恼,这样他对学业从不掉以轻心,为了克服自己接受慢的缺点,他总是“笨鸟先飞”,这样在漫长的学习生涯中,他养成一种坚忍不拔的品质,这又是一个获得成功的必要条件。第三种类型的人“天然”地具备了成功的两个最重要的因素,所以大部分在学术上有成就的人都来自于他们。据说牛顿、爱因斯坦小时候都很“笨”,倘若真是这样,这便是上面论述最好佐证。另外的例子是真人真事,20世纪伟大的数学家吉伯特(1862—1943),他接受新的思想很慢,但一经接受,在运用和进一步发展这些思想上,就没有人能和他比拟了。至于第四种类型的人,虽然他们在学业上很费力,但他们的成功机率并不比第一、二种类型的人要少,甚至还要大于第二种类型的人。这种人只要不放弃努力,那么在他艰难的学习过程中,自然会养成一种深刻钻研的禀性,此是“勤能补拙”之谓也,这正是一切在学术上获得成就的人所要必备的主要品质。明末清初的一位历史学家谈迁,小时候很愚笨,记性差、反应慢,他对自己所读的书籍很难弄懂,他很苦恼,不过他锲而不舍,经常读书到深夜,由于长期的努力,他终于大彻大悟,从此他便突飞猛进,成为那个时代最有学问的人之一。金庸小说《射雕英雄传》里的郭靖大概就是这种类型人的最好写照。总之,无论是哪种类型都有成功希望,只不过有的开始要多费点力气而已。“聪明”并不是人成功的不可缺少的条件,最重要的是人的刻苦和坚忍,而且随着人们的成长,差的类型在不断刻苦努力下,也会迅速朝着最好类型转化,李白说“天生我材必有用”,是千真万确的。
二、数学思维方法和数学学习方法
在一切学科中,数学是一门最重要而且最奇怪的学科。它研究的问题似乎虚无飘渺,并不接触现实世界,但却有莫名其妙的大功效。麦克斯韦尔认为,研究问题时首先要引入数学概念,以他的名字命名的著名方程就是以这种方法推导出来的。狄拉克也认为,应该遵循数学方向前进,因为“正电子”也满足以他的名字命名的方程,所以他预言“反物质”正电子的存在,几十年后人们果然在宇宙射线里发现了它。也许最值得一提的是,陈省身的“纤维丛”几何学理论,竟然可以平行移动到杨振林的“规范场”物理理论里,对此杨振林感叹地说:数学家研究数学问题时,根本没有考虑到物理世界,而却能深刻地阐述世界,这真令人惊叹。如今关于物质粒子最新研究的“弦理论”也和数学家丘成桐的微分几何成就有密切关联。计算机科学和数学理论的关系同样也非常密切。就连过去一向被认为是最难找到实际用途的数论也在计算机科学里发挥着重要作用,例如大整数质因数分解定理丰富了密码学方法:RSA公钥系统,根据大整数的分解,它采用“公钥”和“私钥”技术。[1]由此可见,在数学上花费时间是值得的。一般人并不喜欢数学,他们或者认为数学枯燥无味,或者认为数学深奥难懂。在人们心目中,数学里只有推理,没有猜测;只有逻辑,没有艺术;只有抽象,没有直观;只有理性,没有想象。人们感到数学的结果是一步一步推出来的,没有过人的聪慧是不行的。然而,幸亏事实并非如此,否则我们的数学就不会兴旺到如它目前所示,它早就不会吸引任何一个有智慧的人。其实数学是一门融合了人类一切认识世界方法的学科,只是在它整理自己的知识时,才采取了“定义”、“定理”和“证明”严格方式,这是为了保证它的结论准确无误所致。但是这并未妨碍人们用其他方式获得数学知识,其实最伟大的数学家在他们思考问题时,都是凭借直观(甚至是最粗糙的直观)前进的,特别是当他们在做划时代事业时,更依赖直觉,甚至有时连逻辑也不顾。这在牛顿和莱布尼兹创立微积分时特别明显。本段叙述直接来自于文献[2]。明白了上面道理,我们建议:要在感性上下功夫,要理解数学精神实质,即要有数学质感。对数学的学习要运用人类一切认知手段,即实验、猜测、直观推理、试错法、合情推理和正统的逻辑推理;对于基本知识要有透彻了解,基本技能要熟练掌握。对于较难或者很难的题目,应该努力解决它,真正解决不了,也不要气馁,可以暂时放下,“历史总是带着问题前进的”;对一门数学学科,如果你感到对它的任何一个习题,只要有时间你就可能会做出,即使不会做,但对别人做出的看一眼就会,那么这门学科你就基本过关了,没有必要搞题海战术,这是我国著名物理学家严济慈的观点。
三、彻底性原则
创造性思维最显著的特征就是彻底性。欧氏几何里有一条平行公理:“在平面内过直线外一点,能且只能引一条直线和它平行”。但在欧几里德的《几何原本》里,很迟才引入平行公设,且叙述很啰唆,并不像上述的那样简练。后人怀疑欧几里德并不想把它作为公理,只是“证不了它”,才不得不把它作为一条公设采用。后来的数学家们跃跃欲试,用各种方法试图证明它,就这样证明了一千多年。不少人采用“反证法”,得出许多奇特结果,可惜他们认为“荒谬”,就匆忙下结论说,他们发现了矛盾从而证实了平行公设。只有高斯、鲍利埃、罗巴切夫斯基和旧观念,即认为“欧氏公理体系是唯一正确的”,彻底决裂,他们发现了非欧几何。高斯惧怕旧观念势力,鲍利埃患得患失,他们都没有发表他们的工作,只有罗巴切夫斯基勇敢地发表了他的成果。[3]同样,爱因斯坦相对论和量子力学也都是彻底摒弃旧有观念的好例子。旧有观念根植于人的潜意识里,人们很难发现它,更难突破它。诚如一位物理学家说,他花了好几年工夫才真正弄懂相对论,不是由于他知识的缺陷,而是由于他头脑里的固有观念妨碍了他的理解。他的话有助于我们理解突破旧观念时,坚持彻底性原则的重要性。只要是创造性工作,哪怕是很小的创新,实质上都是在突破我们潜意识里某个旧有观念。希望有所创造的人,对此不可不察。
对思维类型做深入的反思和研究,可以及早发现学生的思维特点,进而就可以给予学生有效的指导和引导,并且我们还要鼓励学生创造性思维,努力攀登科学的顶峰。
参考文献:
[1]Michael Sipser.计算理论导引[M].张立昂,黄雄,译.北京:机械工业出版社,2000.
[2]王健吾.数学思维方法引论[M].合肥:安徽教育出版社,1996.
[3]斯科特.数学史[M].侯德润,张兰,译.桂林:广西师范大学出版社,2002.
基金项目:本文系“2013年金陵科技学院科研基金项目”(项目编号:jit-n-201305)和“江苏省现代教育技术课题”(项目编号:2013-R-26144)的研究成果。
作者简介:王蓁蓁(1975-),女,江苏南京人,金陵科技学院信息技术学院,博士后,讲师。(江苏?摇南京?摇211169)endprint