郭 爽,张 玲
(大庆师范学院 数学科学学院,黑龙江 大庆 163712)
目前,关于捕食者及其食饵之间的关系研究已有许多结果[1-6].Freedman等[1]提出了一类Gause型食物链模型:
(1)
其中:x,y和z分别表示t时刻食饵、捕食者和顶层捕食者的数量;g(x)是食饵的内部增长函数;p(x)和q(y)分别是捕食者和顶层捕食者的功能反应函数;h,s>0分别是捕食者和顶层捕食者的死亡率;e,m>0分别是食饵和捕食者的转换率.由于种群会出现振荡现象,所以合理的解释是引入一个单一的时滞到捕食者的功能反应函数中,如: Hastings等[3]讨论了种群的灭绝、边界行为以及共存平衡点的全局渐近稳定性;郭爽等[6]强调了该模型随着时滞的增加会出现稳定的Hopf分支,并模拟出Hopf分支的全局存在性等.本文将时滞引入顶层捕食者方程的功能反应函数中,讨论该模型复杂的动力学现象.
选择g(x)=a(1-x/k),p(x)=βx/(1+px),q(y)=ry,将时滞引入q(y)中,可得下列时滞微分方程:
(2)
这里a,β,k,p,h,e,r,s,m都是正参数.
为方便,将式(2)非量纲化,可得下列方程:
(3)
其中:m11=1-2x*-by*/(x*+b)2;m12=-x*/(x*+b)<0;m21=eby*/(x*+b)2>0;m23=-dy*<0;n32=uz*>0.特征值λ满足如下特征方程:
D(λ,τ)=λ3+a2λ2+a1λ+(b1λ+b0)e-λτ=0,
(4)
其中:a2=-m11;a1=-m12m21>0;b1=-m23n32>0;b0=m11m23n32.
如果m11=0,则a2=0,b0=0,易知λ=0是特征方程(4)的根.将式(4)对λ求导,有
表明λ=0是式(4)的单根.将λ=iω代入式(4)并分离实虚部,有
b1ωsinωτ=0, -ω3+a1ω+b1ωcosωτ=0,
(5)
将式(5)化简得
(6)
(7)
所以(±ω0,τ0)是式(4)的解,即±iω0是τ=τ0时式(4)的纯虚特征根.记λ(τ)=α(τ)+iω(τ)是方程(3)满足α(τ0)=0,ω(τ0)=ω0的根,定义p*=(1-x*)2/(1-2x*) ⟺m11=0,则当p=p*,τ=τ0时,有下述定理.
定理1假设2l/e 证明:根据前面的讨论知,当p=p*,τ=τ0时,方程(4)有一个单零特征根和一对纯虚根.假设方程(4)有一个正实部的根λ=α0+iβ0,令λ=α(τ)+iβ(τ)是p=p*时方程(4)满足α(τ0)=α0>0和β(τ0)=β0的解,则当τ∈(τ0-δ,τ0)时,存在正数0<δ<τ0,使得α(τ)>0. 矛盾.证毕. 图1 当b=0.3,d=0.62,e=0.532,l=0.22,c=0.15, u=0.55时,系统(2)在参数平面上的分支图Fig.1 Bifurcation diagram of system (2) on the parameter plane for b=0.3,d=0.62, e=0.532,l=0.22,c=0.15,u=0.55 图2 当p=0.213 5,τ=0.746 7时平衡点的波动曲线Fig.2 Fluctuation curves of (0.737 3,0.272 7,0.716 2) when p=0.213 5,τ=0.746 7 图3 当p=1.157,τ=2.408 7时平衡点附近的周期波动曲线Fig.3 Fluctuation cycle curves near the equilibrium when p=1.157,τ=2.408 7 图4 当p=5.514,τ=5.801 7时平衡点附近的拟周期波动曲线Fig.4 Quasi-periodic motion curves near the equilibrium when p=5.514,τ=5.801 7 图5 当p=2.133,τ=15.807时平衡点附近的爆发行为Fig.5 Bursting behavior near the equilibrium when p=2.133,τ=15.807 [1] Freedman H I,Waltman P.Mathematical Analysis of Some Three-Species Food-Chain Models [J].Mathematical Biosciences,1977,33(3): 257-276. [2] Ginoux J M,Rossetto B,Jamet J L.Chaos in a Three-Dimensional Volterra-Gause Model of Predator-Prey Type [J].International Journal of Bifurcation and Chaos,2005,15(5): 1689-1708. [3] Hastings A,Powell T.Chaos in a Three-Species Food Chain [J].Ecology,1991,72(3): 896-903. [4] LIU Gui-rong,YAN Wei-ping,YAN Ju-rang.Positive Periodic Solutions for a Class of Neutral Delay Gause-Type Predator-Prey System [J].Nonlinear Analysis: Theory,Methods &Applications,2009,71(10): 4438-4447. [5] WANG Hong-bin,JIANG Wei-hua.Hopf-Pitchfork Bifurcation in Van Der Pol’s Oscillator with Nonlinear Delayed Feedback [J].Journal of Mathematical Analysis Applications,2010,368(1): 9-18. [6] GUO Shuang,LIU Yang,SHA Yuan-xia,et al.Stability and Bifurcation Analysis on Gause-Type Predator-Prey Model [J].Journal of Jilin University:Science Edition,2012,50(5): 940-944.(郭爽,刘洋,沙元霞,等.Gause型捕食模型的稳定性与分支分析 [J].吉林大学学报:理学版,2012,50(5): 940-944.) [7] Hale J K.Theory of Functional Differential Equations [M].New York: Springer,1977. [8] Faria T,Magalhves L T.Restrictions on the Possible Flows of Scalar Retarded Functional Differential Equations in Neighborhoods of Singularities [J].Journal Dynamics and Differential Equations,1996,8(1): 35-70. [9] JIANG Wei-hua,WANG Hong-bin.Hopf-Transcritical Bifurcation in Retarded Functional Differential Equations [J].Nonlinear Analysis: Theory,Methods &Applications,2010,73(11): 3626-3640.2 数值模拟