教学效果的BP神经网络评价

2013-04-29 15:06袁剑
智能计算机与应用 2013年6期
关键词:BP神经网络教学评价

摘要:对教师教学效果的考察是需要多角度进行评价,无论是学生为教师打分,还是督导组的评议,给出的评价是带有一些主观因素,合理建立评价体系,将各个评价指标客观化,使用综合评价向量作为输入,经由BP神经网络输出得到合理的分数。实验仿真表明,通过训练的BP反向传播网络可模拟一个稳定的评价系统。

关键词:BP神经网络; 模糊矩阵; 教学评价

中图分类号:TP183 文献标识码:A文章编号:2095-2163(2013)06-0060-03

0引言

教师教学效果的审核评定是高校教学中的重要工作。传统的考核方法或者只是由学生填写调查表,给教师划分等级,进行定性描述,或者是由督导组根据几堂课的听评给教师的课堂教学打出一个分值。无论是哪种方法都不能全面客观地对教学工作做出科学评定。而且传统的考核方法受主观因素影响较大,学生在对教师的评判中常会加入多种因素,各种因素之间的影响也各不相同,仅以学生或仅凭督导团的评定来实施评判显然已不尽合理。因此, 建立一种能尽量排除各种主观因素的干扰,同时又具有完善且稳定的评价体系的评定方法则成为必要和重要的研究课题。

本文构建一种教学效果评价体系,即对教师的评价从“教学态度”、“教学内容”、“教授方法”、“课堂效果”四大方面分项进行,无论是学生还是督导组均可据此评价体系给出相应评分。本文提出使用BP反向传播神经网络来构建一个稳定的评分系统,各项评分指标为网络输入,使用已训练完成的BP神经网络来模拟一个专家的打分经验,由此输出一个终值。BP神经网络通常是指基于误差反向传播算法的多层前向神经网络,由于BP网络的神经元采用的传递函数是Sigmoid型可微函数,因而可以实现输入和输出间的任意非线性映射[1]。由于BP神经网络本身就是一种高度复杂的非线性动力系统的辨识模型,并且BP神经网络具有逼近任意非线性函数的能力[2],因此使用BP神经网络进行评价将使结果更具客观性,以此来模拟一个稳定的评分系统亦将具备了现实实现基础。在本文提出的系统中,系统将评价体系中各组评分的分值作为反向传播神经网络的输入,使用BP网络运算后得出一个综合性的评分,即整个过程好似系统模拟一个经验颇丰的专家进行打分。其后,本文又通过数据测试验证了模型的评价结果与实际相符。

1BP神经网络模型

BP(Back Propagation)神经网络是基于误差反向传播的多层前向神经网络,即权值和阈值的调节规则采用了误差反向传播算法,这是一个有导师的神经元网络学习算法[2]。BP网络能学习和存储大量的输入输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。该网络的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。其中的隐层可扩展为多层。只要在隐层中有足够数量的神经元,就可使用这种网络来逼近任何一个函数[3]。一个典型的BP网络结构如图1所示。

2评价模型的构建

本文构建了一套评价体系,使用一套客观标准进行量化表达,且该体系适用于大多数学校的教学评价。评价项目中,各项指标的取值范围为[0,10]。多位专家将根据评价体系方案为每一位参评教师填表打分,经过汇总后,每一个教师的教学情况评分将和一个评价矩阵A对应。列向量x为各个项目指标,行向量e为各位专家评出的各项指标分值。对列向量进行均值计算,则得到各个教师的教学效果指标向量S。所得教学效果指标向量S即是神经网络的输入。评价体系方案设计如表1所示。

表1教师教学评价体系

Tab.1 The system of teaching evaluation类别项目教学态度严谨负责x0; 思想教育x1;教学内容教学目标x2; 准确度x3; 熟练程度x4; 信息量x5;教授方法启发思维x6; 讲授思路x7;重点难点x8;联系实际x9;教学仪态x11;语言表述x12;媒体使用x14课堂效果课堂纪律x15;学生思维x16 图2则为一个由6名专家给出的某位教师教学效果的评分矩阵。

3BP网络模型的设计与实现

使用BP神经网络可以构建稳定的评分系统。人为打分时由于主观因素的影响,分值出入较大,往往不能准确地反映实际情况,为了避免对同一教师的教学评价出现较大反差,构建一个稳定的BP神经网络系统即已成为实践发展过程中的一个必然要求。在系统实现过程中,一位专家首先根据本文提出的评分系统给出各项成绩,并将此成绩作为神经网络的输入值。其后,这位专家再给出一个综合评分,作为神经网络的样本,即输出值,以此即可对BP网络进行训练。训练后的神经网络就可以模拟该专家的打分经验,由此构建形成一个稳定的评分系统。

根据BP神经网络模型的定理(Kolmogrov 定理):给定任一连续函数f:[0,1]n→Rn,f可以用一个三层前向神经网络来模拟实现。第一层,即输入层,有n个神经元;中间层,神经元个数可由经验公式实验得出;第三层,输出层有m个神经元。因此一个三层结构的、设有Sigmoid神经元,并具有足够隐节点的BP神经网络则可以逼近任何一个连续函数。本系统采用有三层结构的BP神经网络,其结构如图1所示。由于评价体系中有17个指标,因此网络的输入层有17个输入。系统的输出层则确定为1个节点。隐层神经元个数将根据实验结果而确定为11个。隐层传递函数可使用“lognsig”对数传递函数实现,输出层传递函数使用“pureline”纯线性传递函数实现。训练函数则使用“traingdm”动量梯度下降反向传播法对网络进行训练,另外,网络性能函数使用了默认的“mse”均方误差函数。MATLAB中的主要代码如下:

设有10位教师需要评分,因而使用10组分数即17×10的矩阵作为10个教师的教学效果矩阵。教学效果矩阵即是神经网络的输入矩阵,亦是训练样本,矩阵的行向量为各项评价指标,10个样本,即10位教师的最终评价结果则作为目标样本来训练神经网络,获取1×10矩阵为目标矩阵,即10位教师的最终得分。实验中运用Matlab编程建立三层BP神经网络,目标训练误差为0.1,最大训练次数为 3 000次。训练误差随训练次数的变化情况如图3所示,神经网络经过909步迭代达到精度要求。对应输出与目标的误差如图4所示。

训练样本的输出与专家打分结果比较如表2所示。

由表2可以看出,训练后的网络输出值与专家给出的终值之间的差异均在可接受的指标范围内,因此采用BP神经网络可以构建稳定的评分系统。

4结束语

在对教师教学效果的评价中存在着多种因素,本文构建了一套较为合理的评价体系,并且提出使用BP神经网络对专家评分进行模拟,利用神经网络可避免打分过程中出现的宽严不定的情况。实验证明,BP神经网络可以构建稳定的评分系统,并取得了良好的实验效果。

参考文献:

[1]许东. 吴铮. 基于Matlab 的系统分析与设计—神经网络[M]. 西安:西安电子科技大学出版社,2003:18-19.

[2]胡守仁. 神经网络导论[M] . 长沙:国防科技大学出版社,1993 :113 - 120.

[3]Martin T. Hagan, Howard B.demuth. 神经网络设计[M]. 北京:机械工业出版社 ,2002:227-255.

[4]郭齐胜. 系统建模原理方法[M]. 长沙:国防科技大学出版社,2003:172-173.

[5]袁剑. BP神经网络在学生综合考评中的应用[J]. 福建电脑,2010(6).

[6]彭志树. 尹雪莲. 基于BP神经网络的教学质量评价模型[J].安徽建筑工业学院学报(自然科学版), 2009(12).

[7]徐惠仁. 浅谈教师教学过程性评价的价值与策略[J]. 上海教育科研,2012(7).

猜你喜欢
BP神经网络教学评价
就bp神经网络银行选址模型的相关研究
基于DEA—GA—BP的建设工程评标方法研究
将“旋律——感受”反馈机制融入中学生物课堂的尝试
试论通过评价促进学生的语言习得
信息技术—Internet实用教程教学设计的思考与实践
对农村小学数学课堂教学评价的认识和看法
复杂背景下的手势识别方法
BP神经网络在软件质量评价中的应用研究 
网络环境下高职英语课程多维度评价方式研究
小学数学“反思型” 教学的探索与实践