关于《孙子定理》的看法

2012-04-29 11:20温千里
数学学习与研究 2012年24期
关键词:数论同理正整数

温千里

学过初等数论的人都知道:里边有一个《孙子定理》,求未知数要用到大衍求一术,但我觉得这样做太麻烦,而我有更好的方法:

比如:某数除以59余26,除以73余42,除以89余34,除以97余13,除以101余3,求最小的某数.

(若用大衍求一术,至少用1小时(手算),我用15分可求出).

解 根据题意(满足后面两条件)得:101x + 3 = 97y + 13,

即101x = 97y + 10(不定方程),

97y = 101x - 10,

97y = 97x + (4x - 10).

设t = ■,97t = 4x - 10,

4x = 97t + 10 = 96t + 8 + (t + 2),取t = 2,则x = 51.

101 × 51 + 3 = 5154,5154是满足除以97余13和除以101余3的最小正整数.

增加第三个条件,即:

89x + 34 = (97 × 101)y + 5154,

即89x = 97 × 101y + 512089x = (110 × 89)y + 7y + 57 × 89 + 47.

设t = ■,89t = 7y + 47,7y = 89t - 47 = 84t - 49 + 5t + 2.

取t = 1,则y = 6.

6 × 97 × 101 + 5154 = 63936是滿足后3个条件的最小正整数.

同理:73x + 42 = (89 × 97 × 101)y + 63936,

73x = 89 × 97 × 101y + 63894,

即73x = 11944 × 73y + 21y + 875 × 73 + 19.

设t = ■,21y = 73t - 19 = 63t + 10t - 19,取t = 4,y = 13.

则89 × 97 × 101 × 13 + 63936 = 11399065是满足后4个条件的最小数.

最后一个条件:

59x + 26 = (73 × 89 × 97 × 10)1y + 11399065,

即59x = 73 × 89 × 97 × 101y + 11399039,

59x = 1078832 × 59y + 21y + 193204 + 3,

即59t = 21y + 3 21y = 59t - 3,

21y = 42t + 17t - 3,21s = 17t - 3,17t = 17s + 4s + 3,取17v = 4s + 3,取s = 12,t = 15,y = 42,则73 × 89 × 97 × 101 × 42 + 11399065 = 2684745643.这是此题的最小解.

猜你喜欢
数论同理正整数
同理不同径的透镜光路
培养孩子,从“同理心”开始
培养孩子,从“同理心”开始
一类涉及数论知识的组合题的常见解法
关于包含Euler函数φ(n)的一个方程的正整数解
几类递推数列的数论性质
赖彬文
数论中的升幂引理及其应用
被k(2≤k≤16)整除的正整数的特征
班主任应该给学生一颗同理心