黄正喜,杜 锴,胡振龙
(中南民族大学 化学与材料科学学院, 武汉 430074)
Ⅱ-Ⅵ型半导体材料由于量子限域效应、尺寸效应、介电限域效应、宏观量子隧道效应和表面效应而具有特殊的光电性质,在光电池[1]、光催化制氢[2,3]、光催化降解[4,5]以及荧光检测[6]等方面有着广泛的应用. CdS为Ⅱ-Ⅵ型半导体重要材料之一,其禁带宽度为2.4 eV,具有较宽的可见光响应区间,在可见光条件下表现出较好的催化活性. 以太阳光为光源,CdS对苯胺的光催化降解行为的研究[7]表明,CdS是一种具有较高催化活性的催化剂.簇形和花形CdS纳米结构对甲基橙的光催化降解研究[8]表明,花形CdS纳米结构由于具有较大比表面积,其光催化活性优于其它的CdS材料.
目前,CdS纳米粒子的制备方法主要有溶胶-凝胶法[9,10]、水热及溶剂热法[11-13]、模板法[3,14]、微乳液法[15]、沉淀法[16]等.其中,沉淀法具有操作简单、对反应温度要求不高、原材料成本低及产品纯度高等优点.本文以沉淀法在水相中制备出CdS纳米颗粒,用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)对其进行表征,并以罗丹明B的可见光降解反应作为探针反应探讨其催化活性.
氯化镉CdCl2·5H2O(AR 天津东大化工厂),硫代氨基脲CH5N3S(CP 国药),乙醇(AR 国药),3 mol·L-1NaOH水溶液,5 mol·L-1罗丹明B水溶液,实验用水均为二次蒸馏水.
D8 ADVANCE型X-射线衍射仪(德国 Bruker),VG Multilab 2000型X-射线光电子能谱仪(美国 Thermal Electron),S570 扫描电子显微镜(日本Hitachi),Tecnai G 20型透射电子显微镜(荷兰 FEI),Lambda Bio35型双光束紫外-可见分光光度计(美国 PE).
用3 mol·L-1NaOH溶液调节氯化镉溶液(0.05 mol·L-1)pH至12,移至三颈瓶中,通入氮气10 min后,加入0.05 mol·L-1硫代氨基脲溶液,于80 ℃反应数小时后停止反应.将所得溶液分别用蒸馏水、乙醇洗涤数次,离心分离,于60 ℃真空干燥4 h,备用.
向容器内加入5 mol·L-1罗丹明B溶液50 mL,一定量的CdS纳米粒子,置于暗箱中搅拌2 h,以达到吸附脱附平衡.以氙灯作为光源,模拟可见光进行光催化降解反应,每隔30 min取样,离心,取上层清液用于UV-Vis分光光度计测其吸光度.
图1为样品的XRD谱图. 由图1可知,该样品无明显的杂峰,在2θ=26.6°,44.1°,52.1°附近出现了对应的特征峰, 与方硫镉矿立方相结构(JCPDS No.42-1411)相符合,其晶面分别为(111),(220),(311). 文献[17]表明,立方相结构较六方相结构的催化活性高.根据Scherrer公式可得,样品的平均粒径约为20 nm.
2θ/(°)
图2为样品的XPS谱图.由图2(a)可见, 除C、O、S、Cd等元素特征能谱峰外,无其他元素能谱峰,表明样品有较高的纯度; 图2(b)为Cd的3d轨道结合能,Cd的3d5/2和3d3/2结合能分别为405.03和411.75 eV; 图2(c)为S的2p轨道结合能,其结合能为161.89 eV,其结果与文献[18]基本一致.
Binding energy/eV
Binding energy/eV
Binding energy/eV
图3(a)为样品的SEM图.由图3(a)可见,样品分布均匀,尺寸一致; 图3(b)为样品的TEM图. 由图3(b)可见,样品为球形颗粒,粒径约为20 nm,与XRD分析结果一致.
(a)SEM (b)TEM
图4为不同催化剂用量条件下,罗丹明B的降解率. 由图4可知,当CdS用量>0.005 g时,罗丹明B的降解率高于90%,表明CdS用量较少时即可达到较高降解率,由此说明CdS纳米颗粒具有较高的催化效率;当CdS用量=0.020 g时,具有最佳催化效率;随CdS用量不断增大,引起了光散射,导致光子能量利用率下降,催化效率反而下降.
t/min
图5为不同降解时间时罗丹明B的UV-Vis吸收光谱,由图5可知,在60 min内,罗丹明B的主要吸收峰由554 nm逐渐蓝移至496 nm,表明在降解过程中伴随着N,N-二乙基的脱落[19],随着降解时间的不断增加,吸收峰的强度不断降低,表明罗丹明B的碳骨架被氧化断裂.
λ/nm
以氯化镉为镉源,硫代氨基脲为硫源在水相中制备了CdS纳米粒子,得到的CdS纳米颗粒尺寸小,分布均匀. 在可见光照射下,用CdS纳米粒子对罗丹明B进行降解,结果表明:CdS纳米粒子有较高的催化活性,将在有机染料降解及太阳能利用等方面有较大的研究价值.
[1]Lee Yuh Lang, Huang Bau Ming, Chien Huei Jing. Highly efficient CdSe-sensitized TiO2photoelectrode for quantum-dot-sensitized solar cell applications[J]. Chem Mater, 2008, 20(22): 6903-6905.
[2]Ke Dingning, Liu Shilin, Dai Ke, et al. CdS/regenerated cellulose nanocomposite films for highly efficient photocatalytic H2production under visible light irradiation[J]. J Phys Chem C, 2009,113(36): 16021-16025.
[3]Bao Ningzhong, Shen Liming, Taleata T , et al. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible Light[J]. Chem Mater, 2008,20(1): 110-117.
[4]Liu Guofeng, Zhang Jianwei, Xu Rong. Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities[J]. J Phys Chem C, 2008, 112(19): 7363-7370.
[5]Wang Le, Wei Hongwei, Fan Yingju, et al. One-dimensional CdS/α-Fe2O3and CdS/Fe3O4heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity[J]. J Phys Chem C, 2009,113(32): 14119-14125.
[6]Wang Guangli, Yu Peipei, Xu Jingjuan, et al. A label-Free photoelectrochemical immunosensor based on water-soluble CdS quantum Dots[J]. J Phys Chem C, 2009,113(25): 11142-11148.
[7]Karunakaran C,Senthilvelan S. Solar photocatalysis: oxidation of aniline on CdS[J]. Solar Energy, 2005,79(5): 505-512.
[8]Xu Di, Cao Aimei, Deng Wenli. Self-assembly and photocatalytic properties of clustered and flower like CdS nanostructures[J]. Acta Phys-Chim Sin, 2008,24(7):1219-1224.
[9]Muruganandham M, Kusumoto Y, Okamoto C, et al. Mineralizer-assisted shape-controlled synthesis, characterization, and photocatalytic evaluation of CdS microcrystals[J]. J Phys Chem C, 2009,113(45): 19506-19517.
[10]Cao Y C , Wang Tianhui. One-pot synthesis of high-quality zinc-blende CdS nanocrystals[J]. J Am Chem Soc, 2004,126(44): 14336-14337.
[11]Cao Huaqiang, Wang Guozhi, Zhang Sichun, et al. Growth and optical properties of wurtzite-type CdS nanocrystals[J]. Inorg Chem, 2006,45(13): 5103-5108.
[12]Wang Qingqing, Xu Gang, Han Caorong, et al. Synthesis and characterization of large-scale hierarchical dendrites of single-crystal CdS[J]. Crystal Growth & Design, 2006,6(8): 1776-1780.
[13]Yang Jiang, Zeng Jinghui, Yu Shihong, et al. Forma-
tion process of CdS nanorods via solvothermal route[J]. Chem Mater, 2000,12(11): 3259-3263.
[14]Lemon B, Crooks R. Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots[J]. J Am Chem Soc, 2000,122(51): 12886-12887.
[15]Wang Dayang, Cao Yan, Zhang Xintong, et al. Size control of CdS nanocrystals in block copolymer micelle[J]. Chem Mater, 1999,11(2): 392-398.
[16]Pandey G, Dixit S. Growth mechanism and optical properties determination of CdS nanostructures[J]. J Phys Chem C, 2011,115(36):17633-17642.
[17]Mau A W H, Huang C B, Bard A J. Hydrogen photo-
production by Nafion/cadmium sulfide/platinum films in water/sulfide ion solutions[J]. J Am Chem Soc, 1984,106(22): 6537-6542.
[18]Nakanishi T, Ohtani B, Uosaki K. Fabrication and cha-
racterization of CdS-nanoparticle mono- and multilayers on a self-assembled monolayer of alkanedithiols on gold [J]. J Phys Chem B, 1998,102 (9): 1571-1577.
[19]Xuan Shouhu, Jiang Wanquan, Gong Xinglong, et al. Magnetically separable Fe3O4/TiO2hollow spheres: fabrication and photocatalytic activity[J]. J Phys Chem C, 2009,113(2):553-558.